

Clustering

Machine Learning

Hamid R Rabiee – Zahra Dehghanian
Spring 2025

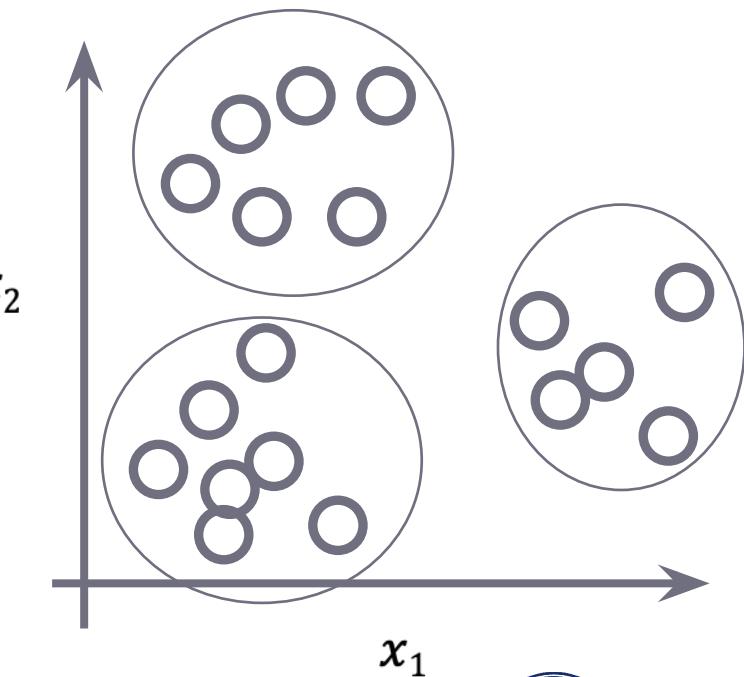
Sharif University
of Technology

Unsupervised learning

- **Clustering**: partitioning of data into groups of similar data points.
- **Density estimation**
 - Parametric & non-parametric density estimation
- **Dimensionality reduction**: data representation using a smaller number of dimensions while preserving (perhaps approximately) some properties of the data.

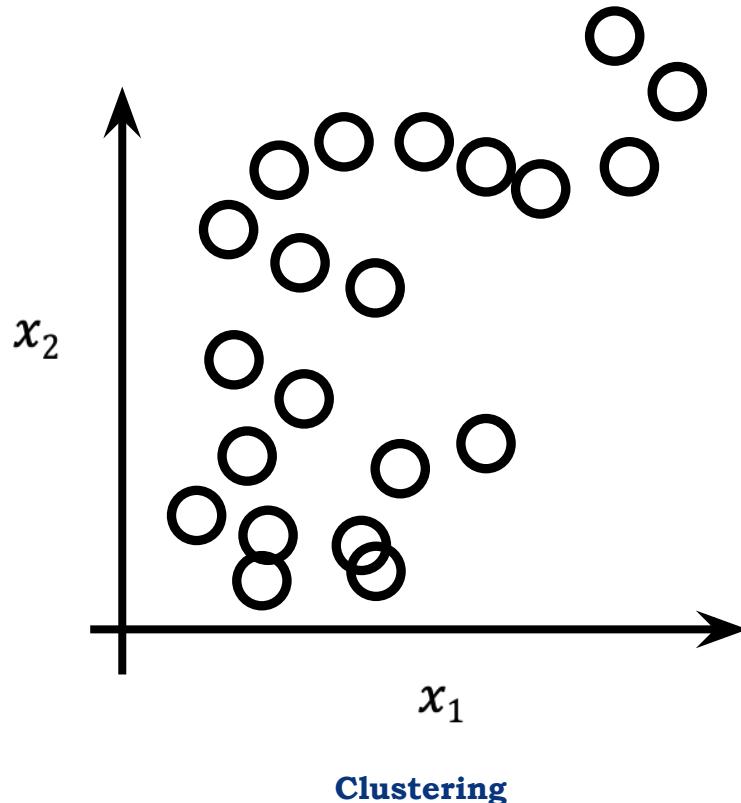
Clustering: Definition

- We have a set of unlabeled data points $\{x^{(i)}\}_{i=1}^N$ and we intend to **find groups of similar objects** (based on the observed features)
 - high intra-cluster similarity
 - low inter-cluster similarity



Clustering: Another Definition

- **Density-based definition:**
 - Clusters are regions of high density that are separated from one another by regions of low density



Difficulties

- Clustering is not as well-defined as classification
- Clustering is subjective
 - Natural grouping may be ambiguous

Clustering Purpose

- **Preprocessing stage** to index, compress, or reduce the data
- Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).
- Knowledge discovery from data: As a tool to **understand the hidden structure** in data or to **group** them
 - To gain insight into the structure of the data (prior to classifier design)
 - Provides information about the internal structure of the data
- To group or partition the data when no label is available

Clustering Applications

- **Information retrieval (search and browsing)**
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages

Clustering of docs

- Google news

News U.S. edition ▾ Modern ▾

Top Stories

- John Glenn
- Aleppo
- Donald Trump
- Oakland Raiders
- Spider-Man: Homecoming**
- Heisman Trophy
- Park Geun-hye
- Ghana
- La La Land
- Alabama

News near you

- World
- U.S.
- Business
- Technology
- Entertainment
- Sports
- Science

Spider-Man: Homecoming

CNET

Your 'Spider-Man: Homecoming'

CNET - 3 hours ago

"Spider-Man: Homecoming" drop

'Spider-Man: Homecoming' — 7 | 'Spider-Man: Homecoming 2,' 'Ba

Highly Cited: Exclusive photo: Spidey... In Depth: Every Plot Point and E

[See realtime coverage](#)

We Got This Cov...

YouTube

Marvel drops 'Spider-Man: Homecoming' trailer

Los Angeles Times - 8 hours ago

The first trailer for the Marvel and Sony Pictures Entertainment

'Spider-Man: Homecoming' First Trailer: Peter Parker

Us Weekly - 8 hours ago

By Megan French. Error loading playlist: Playlist load error: I spidey senses tingling with excitement.

Spider-Man: Homecoming: Tom Holland

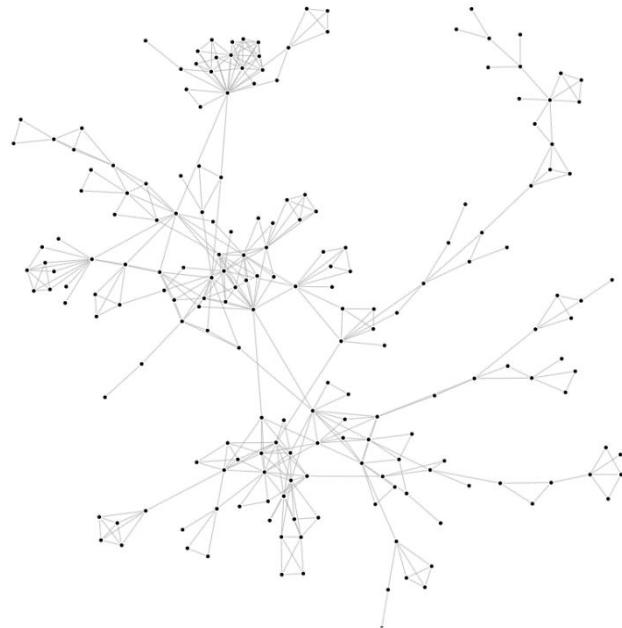
The Guardian - 19 hours ago

Spider-Man: Homecoming sees Tom Holland

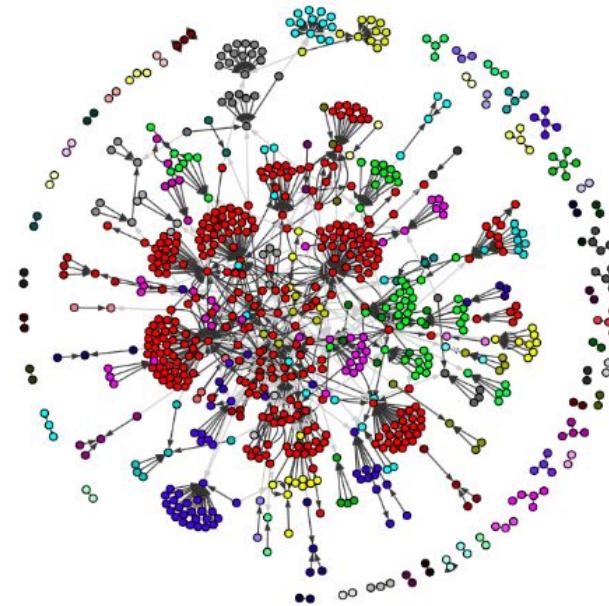
Clustering Applications

- **Information retrieval (search and browsing)**
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- **Cluster users of social networks by interest (community detection).**

Social Network: Community Detection



Out[2]:

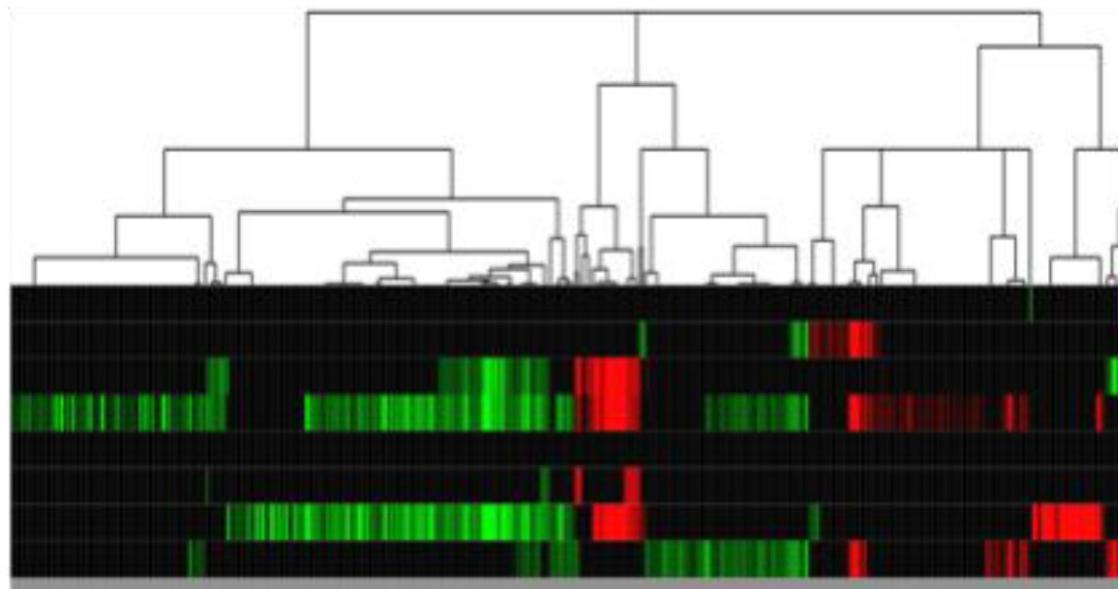


Clustering Applications

- **Information retrieval (search and browsing)**
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- **Cluster users of social networks by interest (community detection).**
- **Bioinformatics**
 - cluster similar proteins together (similarity w.r.t. chemical structure and/or functionality etc)
 - or cluster similar genes according to microarray data

Gene clustering

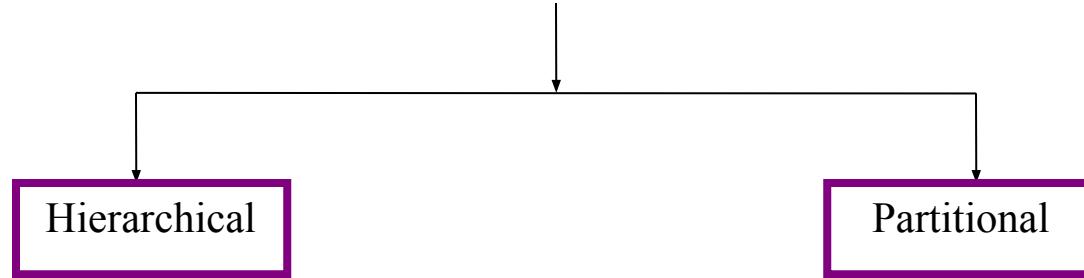
- Microarrays measures the expression of all genes
- Clustering genes can help to determine new functions for unknown genes by grouping genes



Clustering Applications

- Information retrieval (search and browsing)
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- Cluster users of social networks by interest (community detection).
- Bioinformatics
 - Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc) or similar genes according to microarray data
- **Market segmentation**
 - Clustering customers based on their purchase history and their characteristics
- Image segmentation
- Many more applications

Categorization of Clustering Algorithms



Partitional algorithms: Construct various partitions and then evaluate them by some criterion
the desired number of clusters K must be specified.

Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion

Clustering methods we will discuss

- Objective based clustering
 - K-means
 - EM-style algorithm for clustering for mixture of Gaussians (in the next lecture)
- Hierarchical clustering

Partitional Clustering

- $\mathcal{X} = \{\mathbf{x}^{(i)}\}_{i=1}^N$
- $\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K\}$
 - $\forall j, \mathcal{C}_j \neq \emptyset$
 - $\bigcup_{j=1}^K \mathcal{C}_j = \mathcal{X}$
 - $\forall i, j, \mathcal{C}_i \cap \mathcal{C}_j = \emptyset$ (**disjoint partitioning for hard clustering**)

Nonhierarchical, each instance is placed in exactly one of K non-overlapping clusters.

Hard clustering: Each data can belong to one cluster only

- Since the output is only one set of clusters the user has to specify the desired number of clusters K.

Partitioning Algorithms: Basic Concept

- Construct a partition of a set of N objects into a set of K clusters
 - The number of clusters K is given in advance
 - Each object belongs to **exactly one** cluster in hard clustering methods
- K-means is the most popular partitioning algorithm

Objective Based Clustering

- **Input:** A set of N points, also a distance/dissimilarity measure
- **Output:** a partition of the data.

- **k-median:** find centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize

$$\sum_{i=1}^N \min_{j \in 1, \dots, K} d(\mathbf{x}^{(i)}, \mathbf{c}_j)$$

- **k-means:** find centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize

$$\sum_{i=1}^N \min_{j \in 1, \dots, K} d^2(\mathbf{x}^{(i)}, \mathbf{c}_j)$$

Distance Measure

- ▶ Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $d(O_1, O_2)$
- ▶ Specifying the distance $d(x, x')$ between pairs (x, x') .
 - ▶ E.g., for texts: # keywords in common, edit distance
 - ▶ Example: Euclidean distance in the space of features

K-means Clustering

- ▶ **Input:** a set $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ of data points (in a d -dim feature space) and an integer K
- ▶ **Output:** a set of K representatives $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K \in \mathbb{R}^d$ as the cluster representatives
 - ▶ data points are assigned to the clusters according to their distances to $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$
 - ▶ Each data is assigned to the cluster whose representative is nearest to it
- ▶ **Objective:** choose $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize:

$$\sum_{i=1}^N \min_{j \in 1, \dots, K} d^2(\mathbf{x}^{(i)}, \mathbf{c}_j)$$

Euclidean k-means Clustering

- **Input:** a set $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ of data points (in a d -dim feature space) and an integer K
- **Output:** a set of K representatives $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K \in \mathbb{R}^d$ as the cluster representatives
 - data points are assigned to the clusters according to their distances to $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$
 - Each data is assigned to the cluster whose representative is nearest to it
- **Objective:** choose $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize:
$$\sum_{i=1}^N \min_{j \in 1, \dots, K} \|\mathbf{x}^{(i)} - \mathbf{c}_j\|^2$$
each point assigned to its closest cluster representative

Euclidean k-means Clustering: Computational Complexity

- To find the optimal partition, we need to exhaustively enumerate all partitions
 - ▶ In how many ways can we assign k labels to N observations?
- ▶ NP hard: even for $k = 2$ or $d = 2$
- ▶ For $k=1$: $\min_{\mathbf{c}} \sum_{i=1}^N \|\mathbf{x}^{(i)} - \mathbf{c}\|^2$
 - ▶ $\mathbf{c} = \boldsymbol{\mu} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)}$
- ▶ For $d = 1$, dynamic programming in time $O(N^2K)$.

Common Heuristic in Practice: The Lloyd's method

- Input: A set \mathcal{X} of N datapoints $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ in \mathbb{R}^d

- Initialize centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K \in \mathbb{R}^d$ in any way.
- Repeat until there is no further change in the cost.
 - For each j : $\mathcal{C}_j \leftarrow \{x \in \mathcal{X} \mid \text{where } \mathbf{c}_j \text{ is the closest center to } x\}$
 - For each j : $\mathbf{c}_j \leftarrow \text{mean of members of } \mathcal{C}_j$

Holding centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ fixed

Find optimal assignments $\mathcal{C}_1, \dots, \mathcal{C}_K$ of data points to clusters

Holding cluster assignments $\mathcal{C}_1, \dots, \mathcal{C}_K$ fixed
Find optimal centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$

K-means Algorithm (The Lloyd's method)

Select k random points $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k$ as clusters' initial centroids.

Repeat until *converges* (or other stopping criterion):

for $i=1$ to N do:

 Assign $\mathbf{x}^{(i)}$ to the closest cluster and thus \mathcal{C}_j contains all
 data that are closer to \mathbf{c}_j than to any other cluster

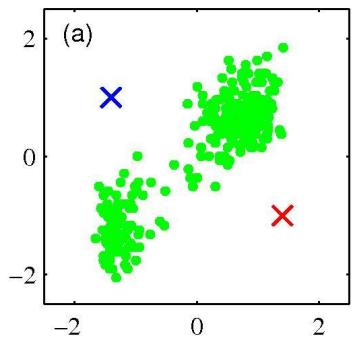
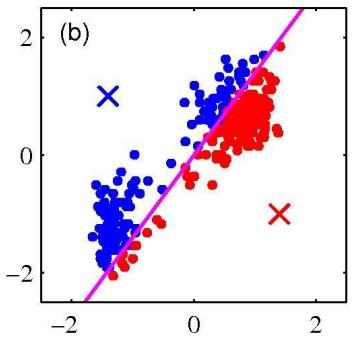
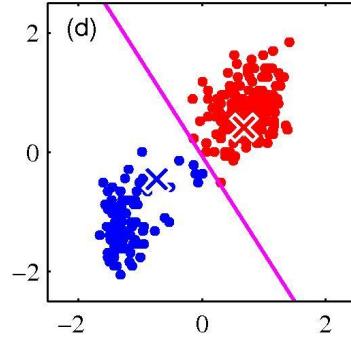
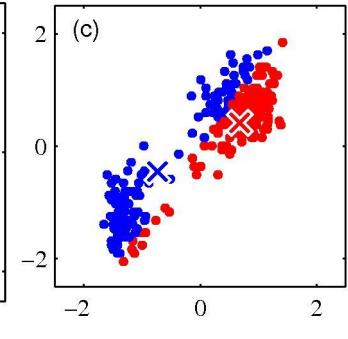
for $j=1$ to k do

$$\mathbf{c}_j = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \mathbf{x}^{(i)}$$

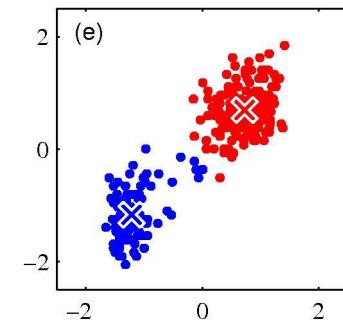
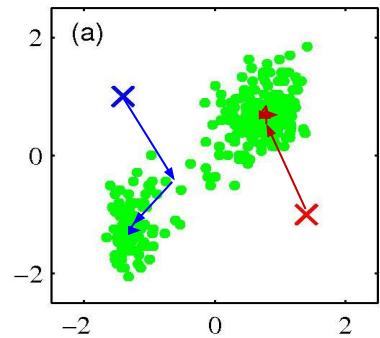
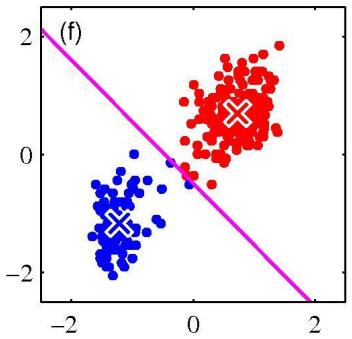
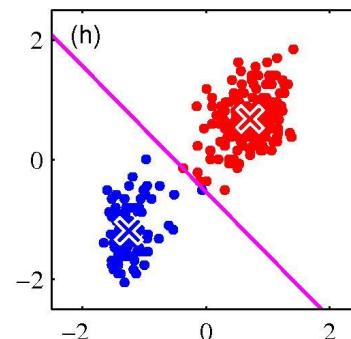
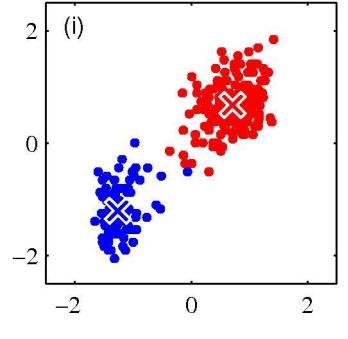
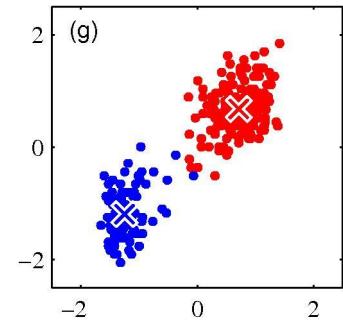
Assign data based on current centers

Re-estimate centers based on current assignment

Assigning data to clusters



Updating means



Intra-cluster similarity view

- k-means optimizes intra-cluster similarity:

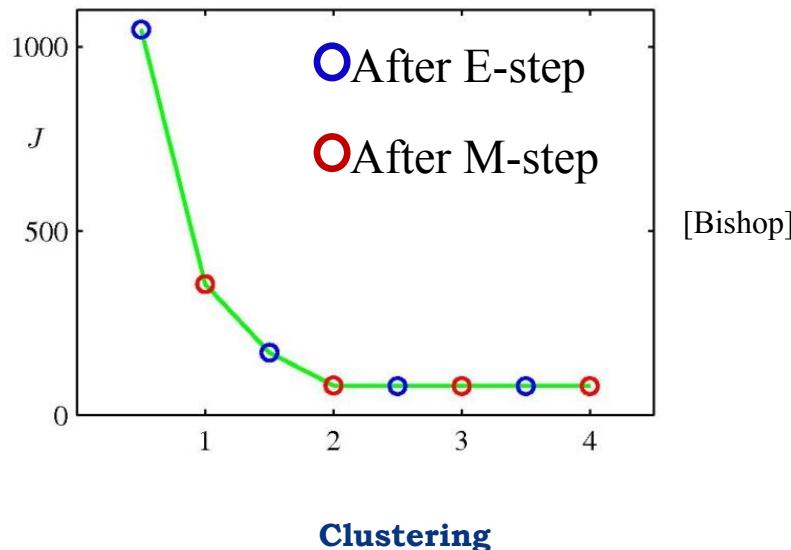
$$J(\mathcal{C}) = \sum_{j=1}^K \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \|\mathbf{x}^{(i)} - \mathbf{c}_j\|^2$$
$$\mathbf{c}_j = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \mathbf{x}^{(i)}$$

$$\sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \|\mathbf{x}^{(i)} - \mathbf{c}_j\|^2 = \frac{1}{2|\mathcal{C}_j|} \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \sum_{\mathbf{x}^{(i')} \in \mathcal{C}_j} \|\mathbf{x}^{(i)} - \mathbf{x}^{(i')}\|^2$$

the average distance to members of the same cluster

K-means: Convergence

- It always converges.
- Why should the K-means algorithm ever reach a state in which clustering doesn't change.
 - Reassignment stage monotonically decreases J since each vector is assigned to the closest centroid.
 - Centroid update stage also for each cluster minimizes the sum of squared distances of the assigned points to the cluster from its center.

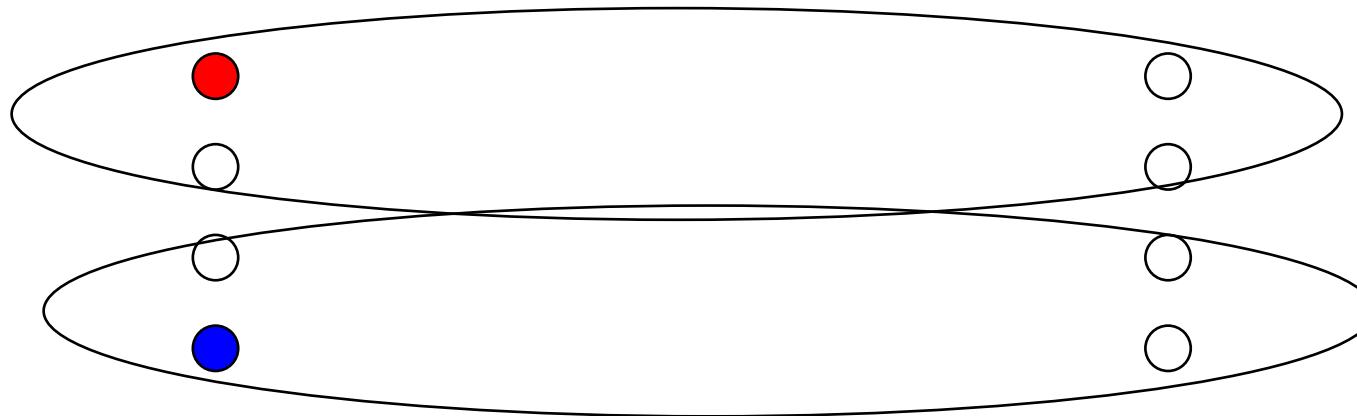


Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - may be arbitrarily worse in terms of the objective score.

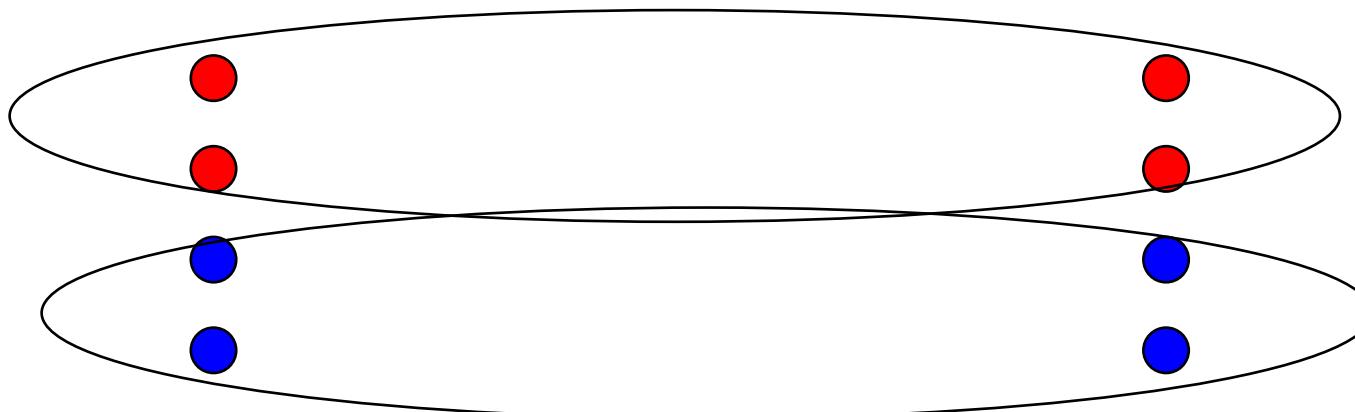
Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - may be arbitrarily worse in terms of the objective score.



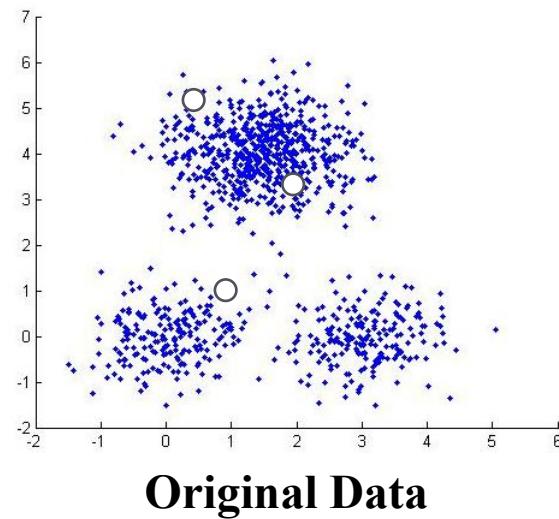
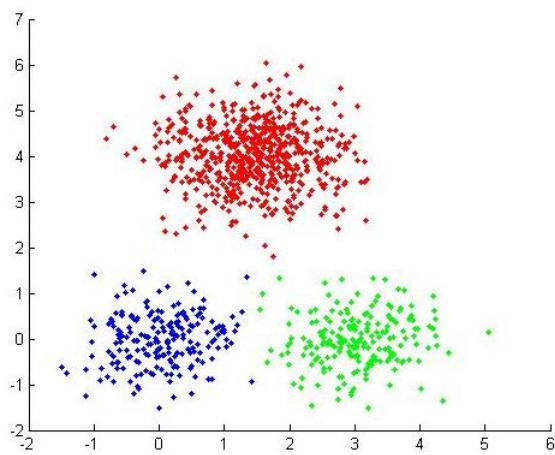
Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - may be arbitrarily worse in terms of the objective score.

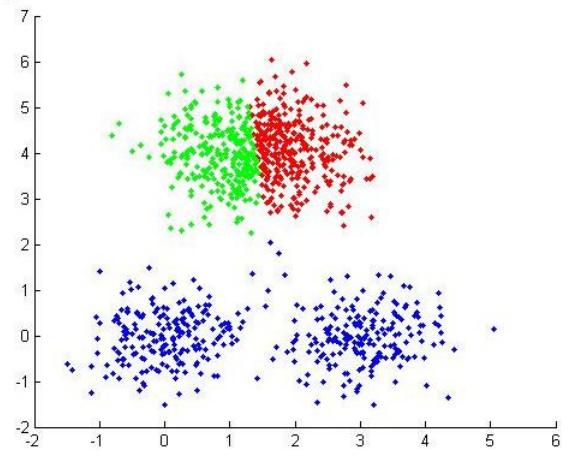


Local optimum: every point is assigned to its nearest center and every center is the mean value of its points.

K-means: Local Minimum Problem



Clustering



The Lloyd's method: Initialization

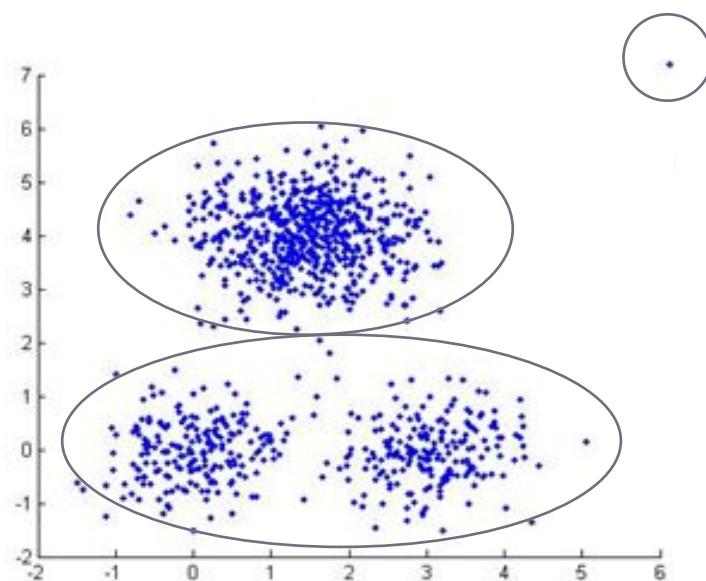
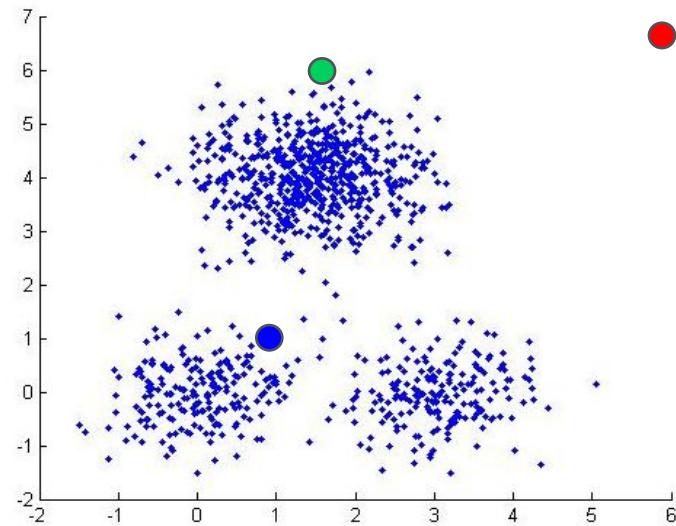
- Initialization is crucial (how fast it converges, quality of clustering)
 - Random centers from the data points
 - Multiple runs and select the best ones
 - Initialize with the results of another method
 - Select good initial centers using a heuristic
 - Furthest traversal
 - K-means ++ (works well and has provable guarantees)

Another Initialization Idea: Furthest Point Heuristic

- - ▶ Choose c_1 arbitrarily (or at random).
 - ▶ For $j = 2, \dots, K$
 - ▶ Select c_j among datapoints $x^{(1)}, \dots, x^{(N)}$ that is farthest from previously chosen c_1, \dots, c_{j-1}

Another Initialization Idea: Furthest Point Heuristic

- It is sensitive to outliers



K-means++ Initialization: D2 sampling

[D. Arthur and S. Vassilvitskii, 2007]

- Combine random initialization and furthest point initialization ideas
- Let the probability of selection of the point be proportional to the distance between this point and its nearest center.
 - probability of selecting of x is proportional to $D^2(x) = \min_{k < j} \|x - c_k\|^2$.

- Choose c_1 arbitrarily (or at random).
- For $j = 2, \dots, K$
 - Select c_j among data points $x^{(1)}, \dots, x^{(N)}$ according to the distribution:

$$\Pr(c_j = x^{(i)}) \propto \min_{k < j} \|x^{(i)} - c_k\|^2$$

- **Theorem:** K-means++ always attains an $O(\log k)$ approximation to optimal k-means solution in expectation.

K-means Clustering: Cost Function

- Minimizes the within-cluster dispersion to the cluster centers:

$$J(\mathcal{C}) = \sum_{j=1}^k \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_j\|^2$$

$$\boldsymbol{\mu}_j = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \mathbf{x}^{(i)}$$

K-median:
$$J(\mathcal{C}) = \sum_{j=1}^k \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_j} \|\mathbf{x}^{(i)} - \mathbf{c}_j\|_1$$

K-means Algorithm

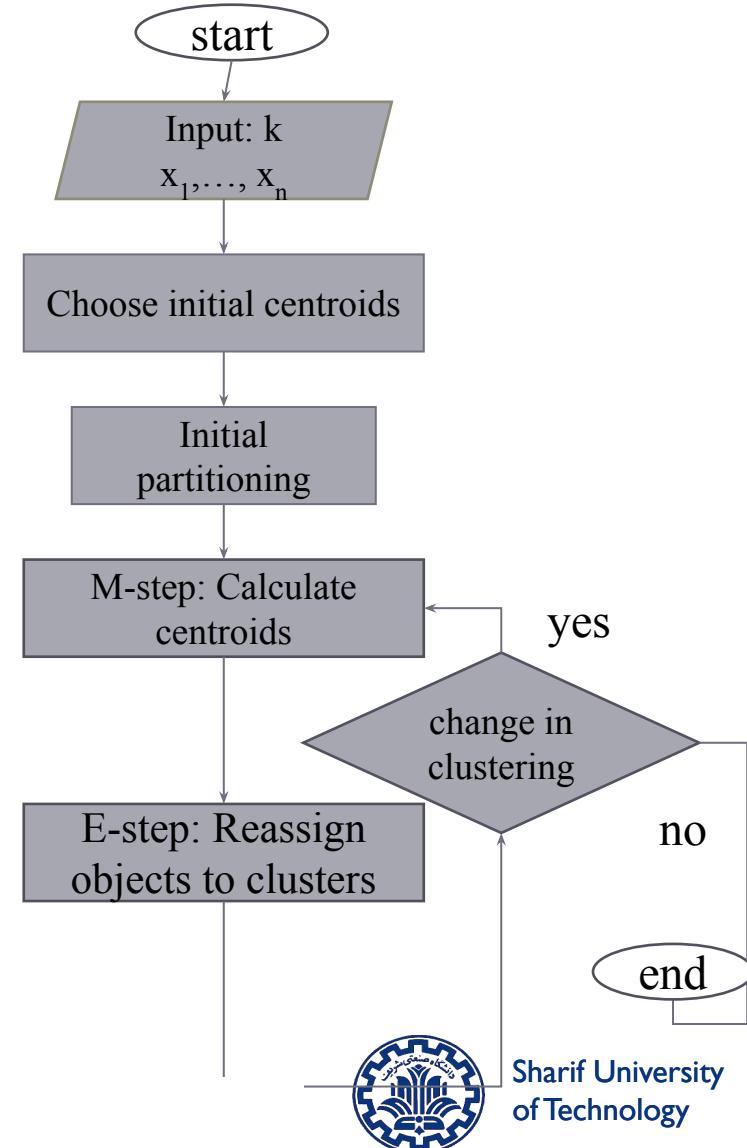
1. Choose k centroids $\{\mu_1, \mu_2, \dots, \mu_k\}$ at random
2. Initial partition data into k clusters by assigning them to the closest centroid
3. M-step: Calculate the centroid (mean) of each of the k clusters.

$$\mu_j = \frac{1}{|\mathcal{C}_j|} \sum_{x \in \mathcal{C}_j} x$$

4. E-step: Reassign data to the closest centroids.

$$\mathcal{C}_j = \{i \mid \forall k, \|x^{(i)} - \mu_j\| < \|x^{(i)} - \mu_k\|\}$$

5. Repeat 3 and 4 until no reallocations occur



K-means: Termination Conditions

- Several possibilities, e.g.,
 - A fixed number of iterations is reached
 - Data partitioning is unchanged
 - Centroid positions don't change
 - Does this mean that the docs in a cluster are unchanged?

How Many Clusters?

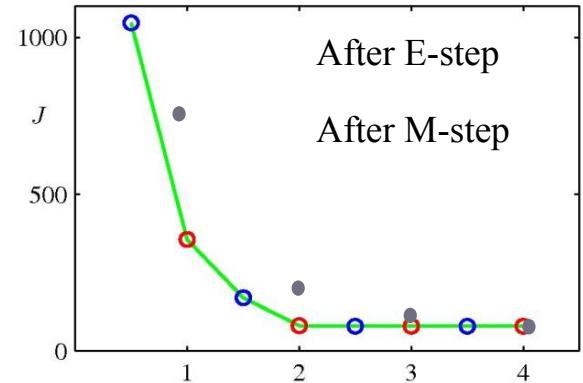
- ▶ Number of clusters k is given in advance in the k-means algorithm
 - ▶ However, finding the “right” number of clusters is a part of the problem
- ▶ Tradeoff between having better focus within each cluster and having too many clusters

How Many Clusters?

- **Heuristic:**

- Find large gap between $k - 1$ -means cost and k -means cost.
- “knee finding” or “elbow finding”.

- Hold-out validation/cross-validation on auxiliary task (e.g., supervised learning task).
- Optimization problem: penalize having lots of clusters
 - some criteria can be used to automatically estimate k
 - Penalize the number of bits you need to describe the extra parameter
$$J'(\mathcal{C}) = J(\mathcal{C}) + |\mathcal{C}| \times \log N$$
- Hierarchical clustering



K-means: Advantages and disadvantages

• Strength

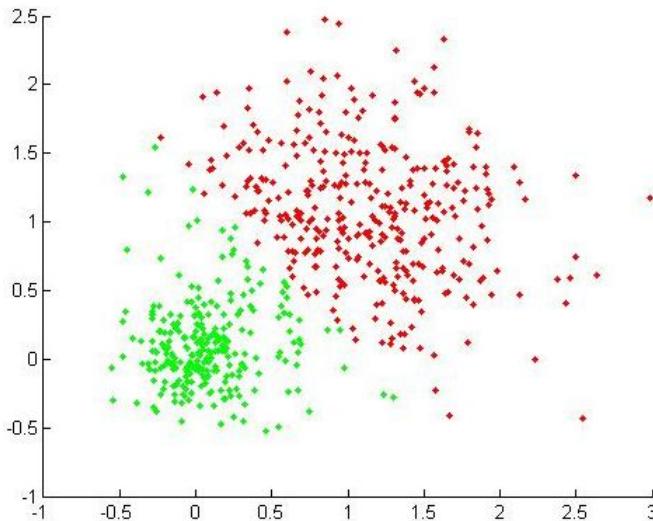
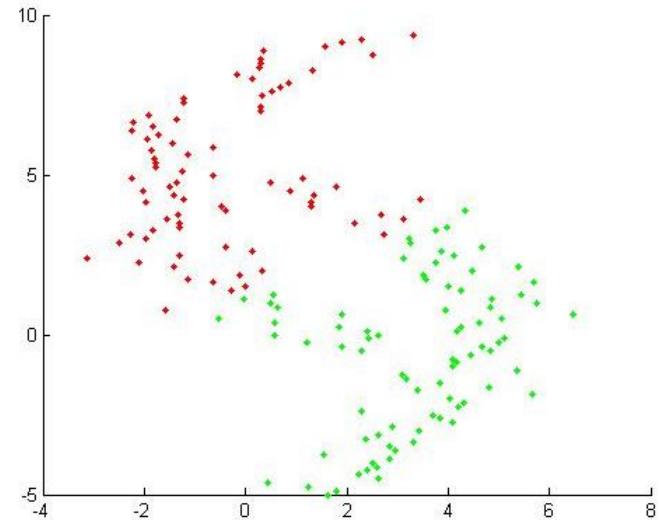
- It is a simple method and easy to implement.
- Relatively efficient: $O(tKNd)$, where t is the number of iterations.
 - K-means typically converges quickly
 - Usually $t \ll n$.
 - Exponential # of rounds in the worst case [Andrea Vattani 2009].

• Weakness

- Need to specify K , the *number of clusters*, in advance
- Often terminates at a *local optimum*.
 - Initialization is important.
- Not suitable to discover clusters with arbitrary shapes
- Works for numerical data. What about categorical data?
- Noise and outliers can be considerable trouble to K-means

k-means Algorithm: Limitation

- In general, k-means is unable to find clusters of arbitrary shapes, sizes, and densities
 - Except to very distant clusters



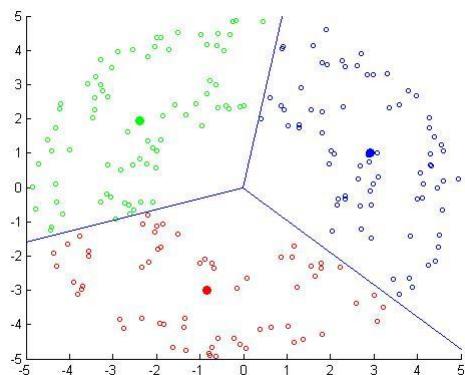
K-means

- K-means was proposed near 60 years ago
 - thousands of clustering algorithms have been published since then
 - However, K-means is still widely used.
- This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering.

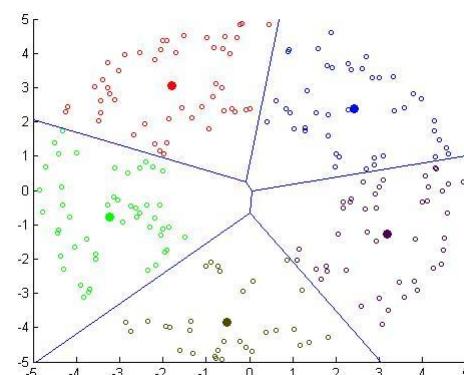
A.K. Jain, Data Clustering: 50 years beyond k-means, 2010.

K-means: Vector Quantization

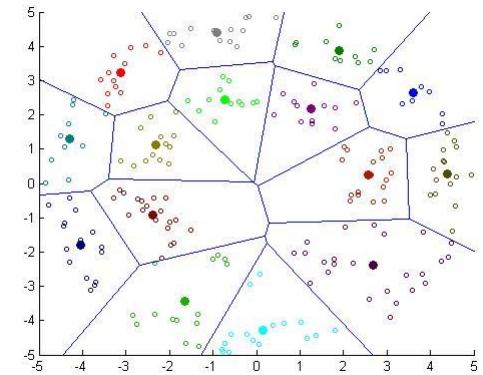
- Data Compression
 - Vector quantization: construct a codebook using k-means
 - cluster means as prototypes representing examples assigned to clusters.



$k = 3$



$k = 5$



$k = 15$

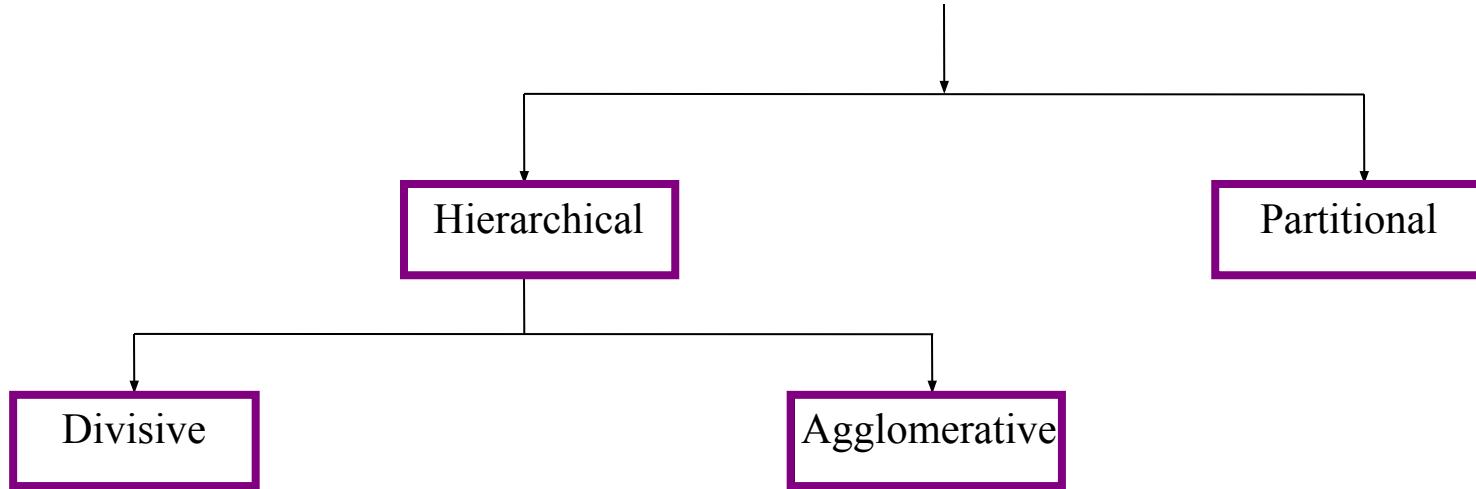
Clustering

K-means: Image Segmentation

Hierarchical Clustering

- ❑ Notion of a cluster can be ambiguous?
- ❑ How many clusters?
- ❑ Hierarchical Clustering: Clusters contain sub-clusters and sub-clusters themselves can have sub-sub-clusters, and so on
 - ❑ Several levels of details in clustering
- ❑ A hierarchy might be more natural.
- ❑ Different levels of granularity

Categorization of Clustering Algorithms



Hierarchical Clustering

- Agglomerative (bottom up):

- Starts with each data in a separate cluster
- Repeatedly joins the closest pair of clusters, until there is only one cluster (or other stopping criteria).

- Divisive (top down):

- Starts with the whole data as a cluster
- Repeatedly divide data in one of the clusters until there is only one data in each cluster (or other stopping criteria).

Hierarchical Agglomerative Clustering (HAC)

- **Algorithm**

1. Maintain a set of clusters
2. Initially, each instance forms a cluster
3. While there are more than one cluster

Pick the two closest one

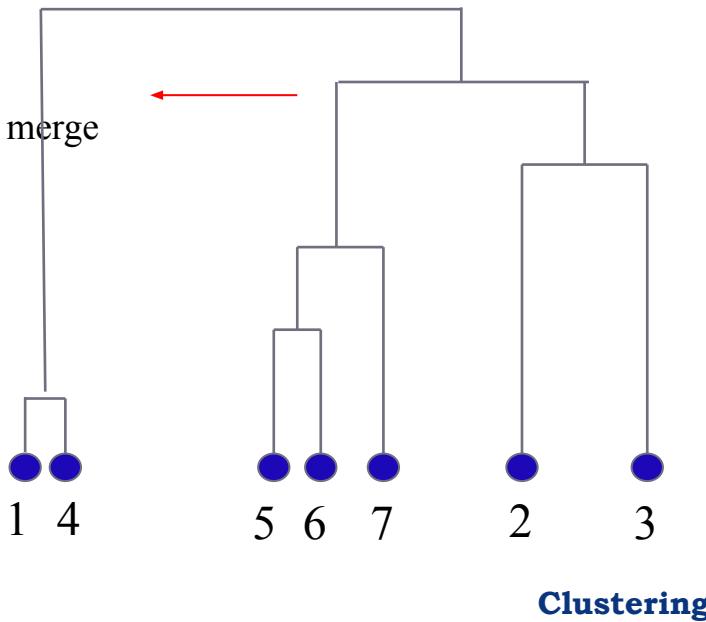
Merge them into a new cluster

Hierarchical Agglomerative Clustering (HAC)

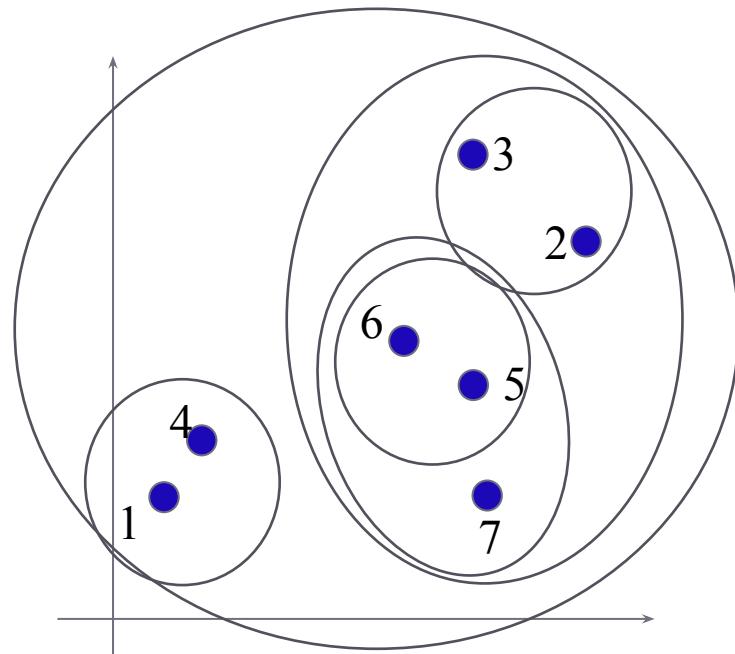
- Algorithm

1. Maintain a set of clusters
2. Initially, each instance forms a cluster
3. While there are more than one cluster
 - Pick the two closest one
 - Merge them into a new cluster

Height represents the distance at which the merge occurs



50

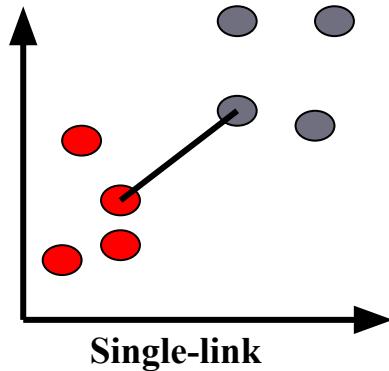


Sharif University
of Technology

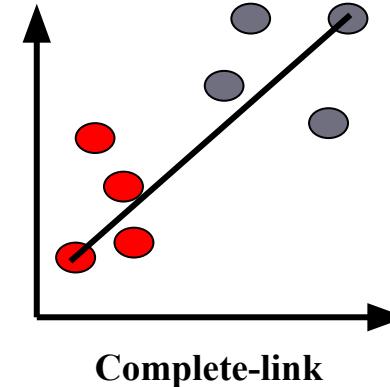
Distances between Cluster Pairs

- Many variants to defining distances between pair of clusters
 - **Single-link**
 - Minimum distance between different pairs of data
 - **Complete-link**
 - Maximum distance between different pairs of data
 - **Centroid (Ward's)**
 - Distance between centroids (centers of gravity)
 - **Average-link**
 - Average distance between pairs of elements

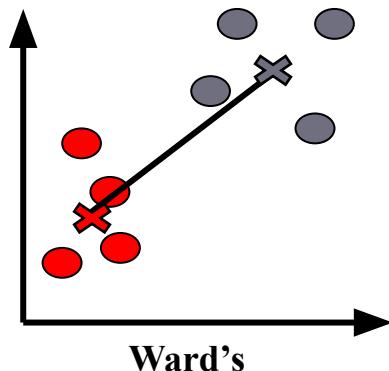
Distances between Cluster Pairs



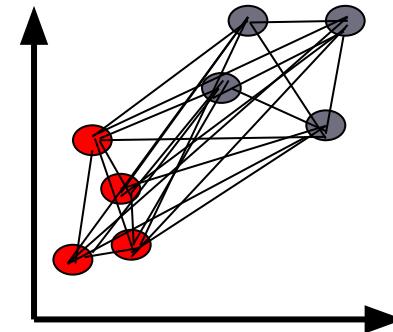
$$dist_{SL}(\mathcal{C}_i, \mathcal{C}_j) = \min_{x \in \mathcal{C}_i, x' \in \mathcal{C}_j} dist(x, x')$$



$$dist_{CL}(\mathcal{C}_i, \mathcal{C}_j) = \max_{x \in \mathcal{C}_i, x' \in \mathcal{C}_j} dist(x, x')$$

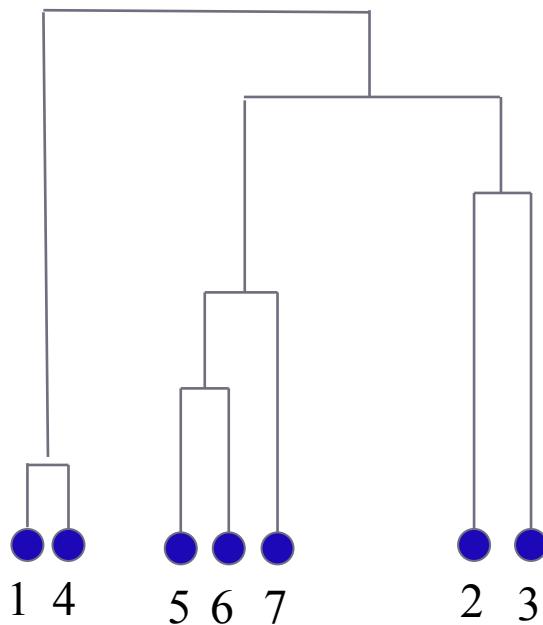
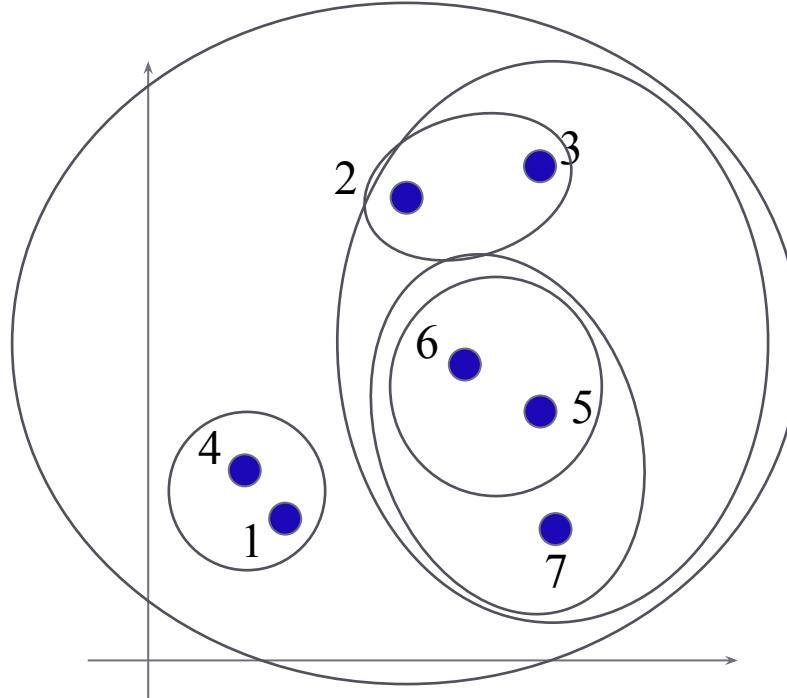


$$dist_{Ward}(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i||\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} dist(\mathbf{c}_i, \mathbf{c}_j)$$



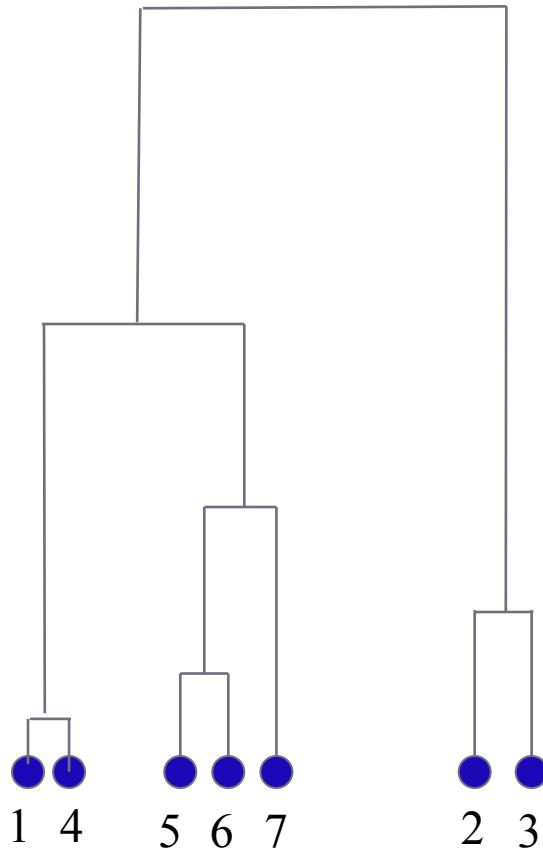
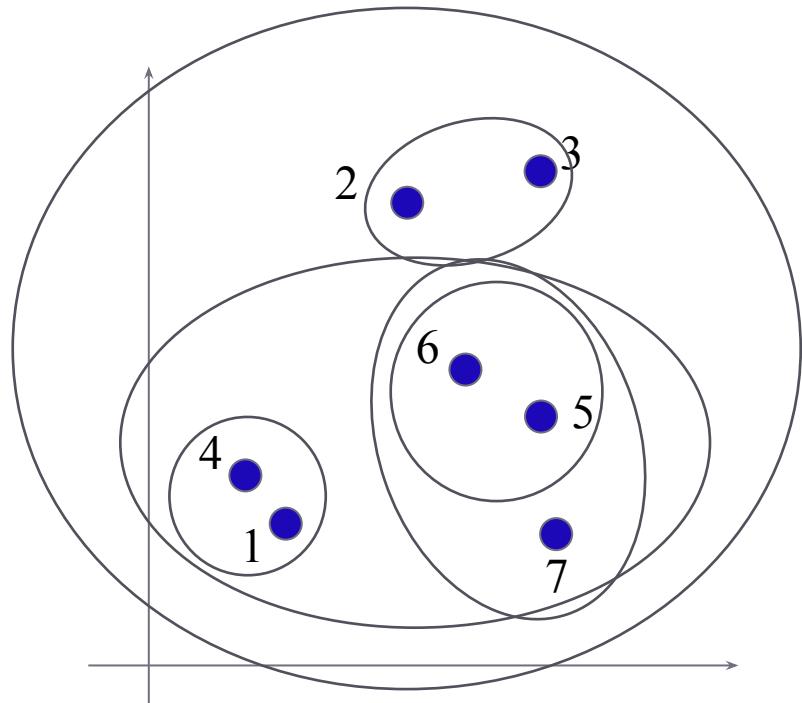
$$dist_{AL}(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i \cup \mathcal{C}_j|} \sum_{x \in \mathcal{C}_i \cup \mathcal{C}_j} \sum_{x' \in \mathcal{C}_i \cup \mathcal{C}_j} dist(x, x')$$

Single-Link



keep max bridge length as small as possible.

Complete Link



keep max diameter as small as possible.

Centroid Linkage

- The distance between two clusters \mathcal{C}_i and \mathcal{C}_j is then defined as the distance between their centroids:

$$dist_{Centroid}(\mathcal{C}_i, \mathcal{C}_j) = dist(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j)$$

$$\boldsymbol{\mu}_j = \frac{1}{|\mathcal{C}_j|} \sum_{x \in \mathcal{C}_j} x$$

- Compute similarity of clusters in constant time:

Average Linkage

-

$$dist_{Average}(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{x \in \mathcal{C}_i} \sum_{x' \in \mathcal{C}_j} dist(x, x')$$

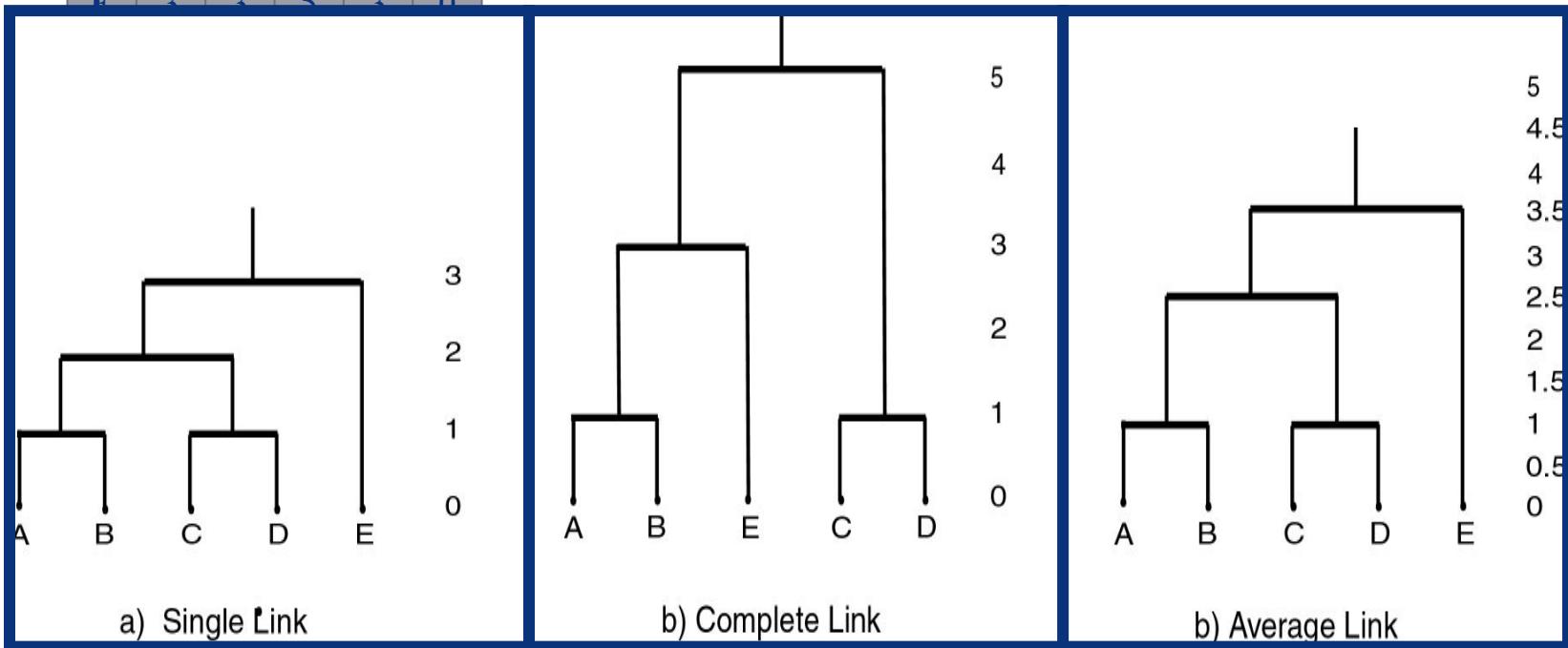
- Similarity of two clusters = average similarity of all pairs within merged cluster.

$$sim(C_i, C_j) = \frac{1}{|C_i \cup C_j|(|C_i \cup C_j| - 1)} \sum_{x \in (C_i \cup C_j)} \sum_{y \in (C_i \cup C_j), y \neq x} sim(x, y)$$

- Compromise between single and complete link.
- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs *between* the two original clusters
- No clear difference in efficacy

EXAMPL E

	A	B	C	D	E
A	0	1	2	2	3
B	1	0	2	4	3
C	2	2	0	1	5
D	2	4	1	0	3
E	3	3	5	3	0



Ward's method

- ▶ The distances between centers of the two clusters (weighted to consider sizes of clusters too):

$$dist_{Ward}(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i||\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} dist(\mathbf{c}_i, \mathbf{c}_j)$$

- ▶ Merge the two clusters such that the increase in k-means cost is as small as possible.
- ▶ Works well in practice.

Distances between Clusters: Summary

- Which distance is the best?
 - Complete linkage prefers compact clusters.
 - Single linkage can produce long stretched clusters.
- The choice depends on what you need.
 - expert opinion is helpful

Similarity Measure

- **Similarity measure $s: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is an upper-bounded function**
 - shows how close to each other each pair of instances
- **Dissimilarity measure $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a lower-bounded function**
 - that for each pair of instances shows how they far from each other
- **Examples of similarity measure:**
 - Dot product: $s(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
 - Cosine: $s(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{\|\mathbf{x}\| \|\mathbf{x}'\|}$
 - Tanimoto: $s(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{\|\mathbf{x}\|^2 + \|\mathbf{x}'\|^2 - \mathbf{x}^T \mathbf{x}'}$

Distance Metric

- ▶ The distance function $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a **metric** if
 - ▶ $d(x, x') \geq 0$ (non-negativity)
 - ▶ $d(x, x') = d(x', x)$ (symmetry)
 - ▶ $d(x, x') = 0$ iff $x = x'$ (isolation)
 - ▶ $d(x, x') \leq d(x, x'') + d(x'', x')$ (triangular inequality) [Why do we need it?]
- ▶ The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

Feature (Attribute) Types

- Real-value
 - e.g., weight
- Binary
 - e.g., gender (M/F), has-diabetes(T/F)
- Nominal (categorical)
 - e.g., Color (Red, Green, Blue, Yellow, ...)
- Ordinal/Ranked
 - e.g., quality (bad, average, good, excellent)

Distance Metrics for Real-Valued Data

- L_p norms ($p \in \mathbb{N}$) or **Minkowski** distance:

$$L_p(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_p = \left(\sum_{i=1}^d |x_i - x'_i|^p \right)^{1/p}$$

- L_1 ($p = 1$) is the **Manhattan** (or city block) distance:

- $L_1(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^d |x_i - x'_i|$

- L_2 ($p = 2$) is the **Euclidean** distance:

- $L_2(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{i=1}^d (x_i - x'_i)^2}$

- L_∞ ($p = +\infty$) distance:

- $L_\infty(\mathbf{x}, \mathbf{x}') = \max_{i=1, \dots, d} |x_i - x'_i|$

Distance Metrics for Real-Valued Data

- ▶ **Weighted Euclidean distance:**

- ▶ Positive weights associated with variables based on data semantics.

$$\sqrt{\sum_{i=1}^d w_i (x_i - x'_i)^2}$$

- ▶ **Mahalanobis distance (B is a symmetric positive semi-definite matrix):**

$$d_B(x, x') = \sqrt{(x - x')^T B (x - x')}$$

- ▶ Weighted Euclidean corresponds to $d_B(x, x')$ where B is a diagonal matrix with diagonal elements w_1, w_2, \dots, w_d
 - ▶ Mahalanobis distance is equivalent to the Euclidean distance in the transformed space $A^T x$ where $AA^T = B$

Distance Metrics for Binary Data

- ▶ Jaccard (Tanimoto) similarity between binary vectors X and Y :

$$Jaccard(X, Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

- ▶ Jaccard distance between binary vectors X and Y :
 - ▶ $1 - Jaccard(X, Y)$
- ▶ Hamming distance between binary vectors:
 - ▶ Number of corresponding elements that are different
 - ▶ Equal to L_1 metric.

Data Matrix vs. Distance Matrix

- ▶ **Data (or pattern) Matrix:** $N \times d$ (features of data):

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix}$$

- ▶ **Distance Matrix:** $N \times N$ (distances of each pattern pair):

$$\mathbf{D} = \begin{bmatrix} d(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}) & \dots & d(\mathbf{x}^{(1)}, \mathbf{x}^{(N)}) \\ \vdots & \ddots & \vdots \\ d(\mathbf{x}^{(N)}, \mathbf{x}^{(1)}) & \dots & d(\mathbf{x}^{(N)}, \mathbf{x}^{(N)}) \end{bmatrix}$$

Single-link, complete-link, and average link only needs the distance matrix.

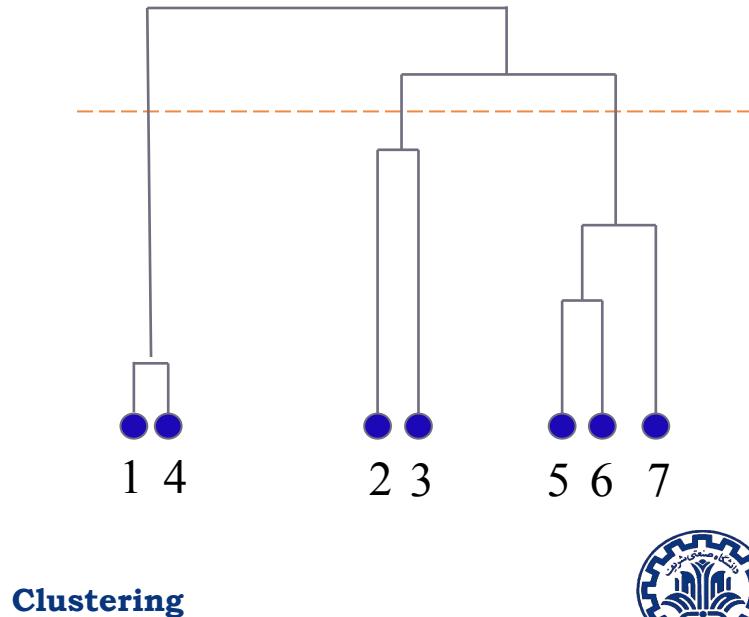
Computational Complexity

- ▶ In the first iteration, all HAC methods compute similarity of all pairs of N individual instances which is $O(N^2)$ similarity computation.
- ▶ In each $N - 2$ merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- ▶ If done naively $O(N^3)$ but if done more cleverly $O(N^2 \log N)$

Dendrogram: Hierarchical Clustering

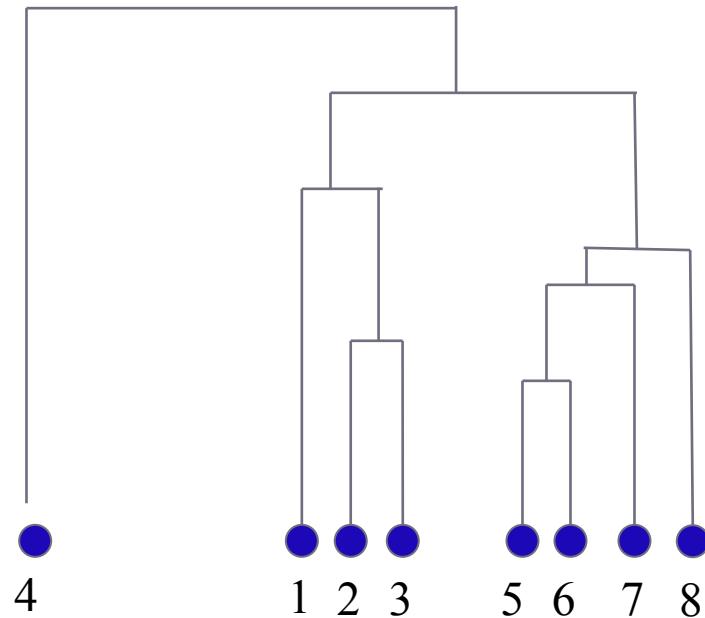
- Clustering obtained by cutting the dendrogram at a desired level
 - Cut at a pre-specified level of similarity
 - where the gap between two successive combination similarities is largest
 - select the cutting point that produces K clusters

Where to “cut” the dendrogram is user-determined.



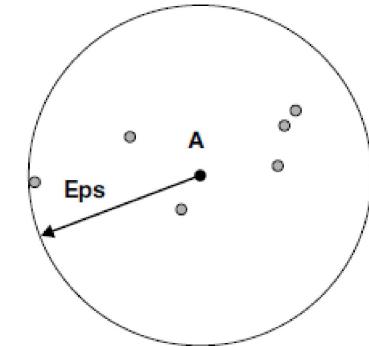
Outliers

- We can detect outliers (that are very different to all others) by finding the isolated branches

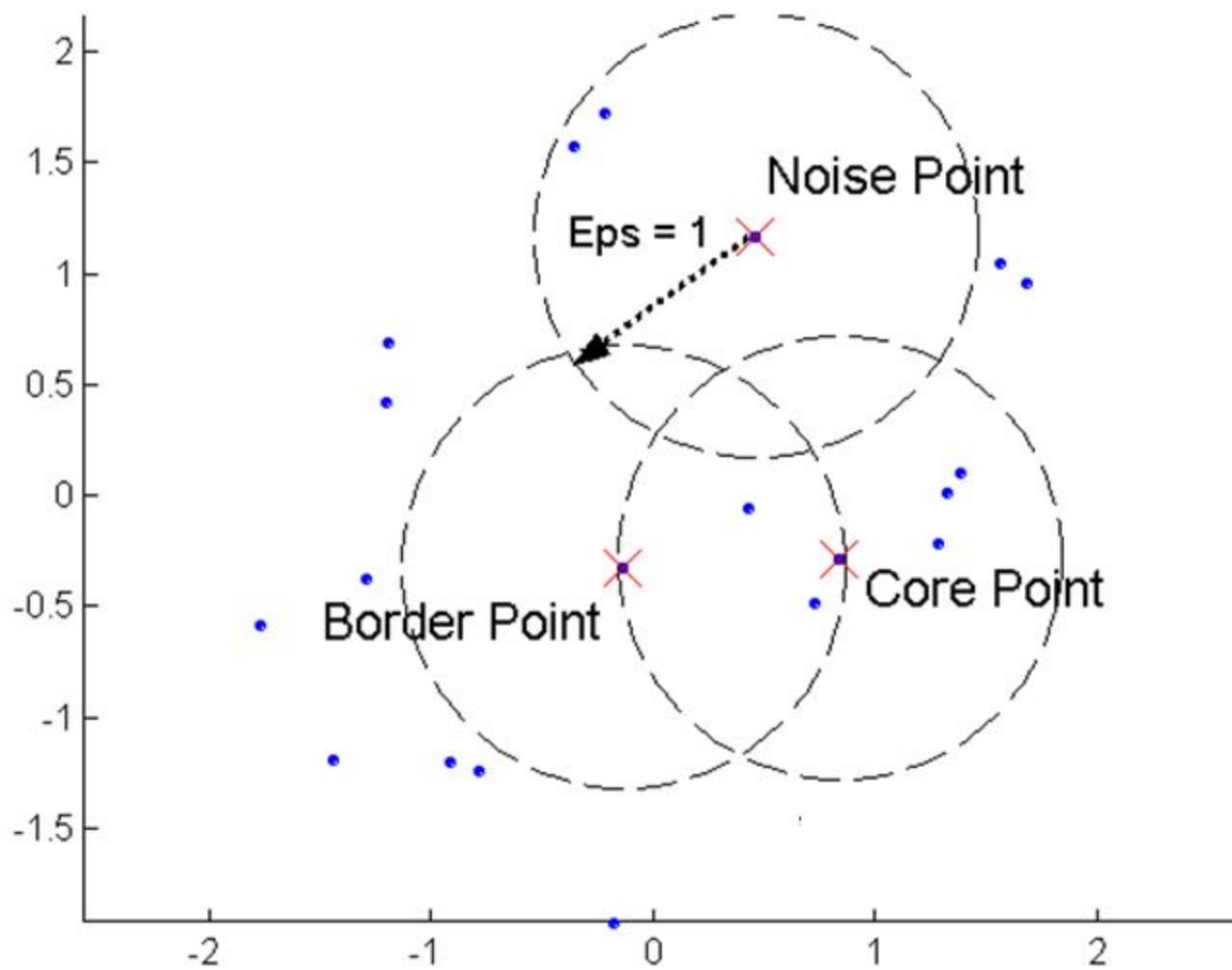


DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a **core point** if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A **border point** has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A **noise point** is any point that is not a core point or a border point.



DBSCAN: Core, Border, and Noise Points

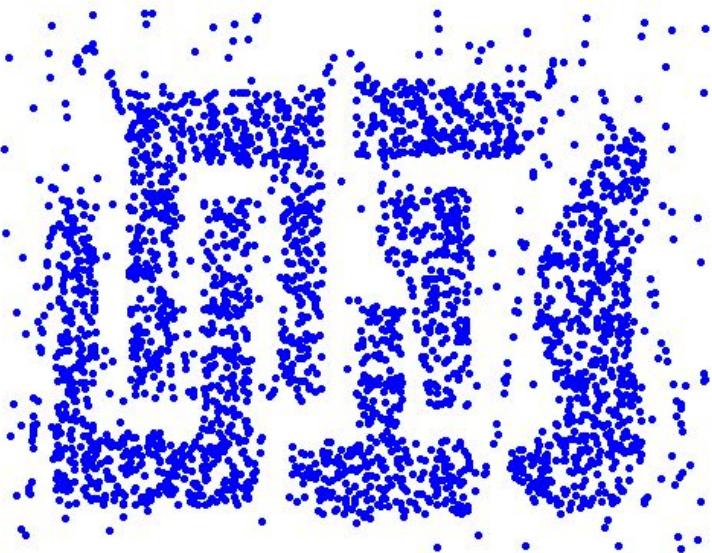
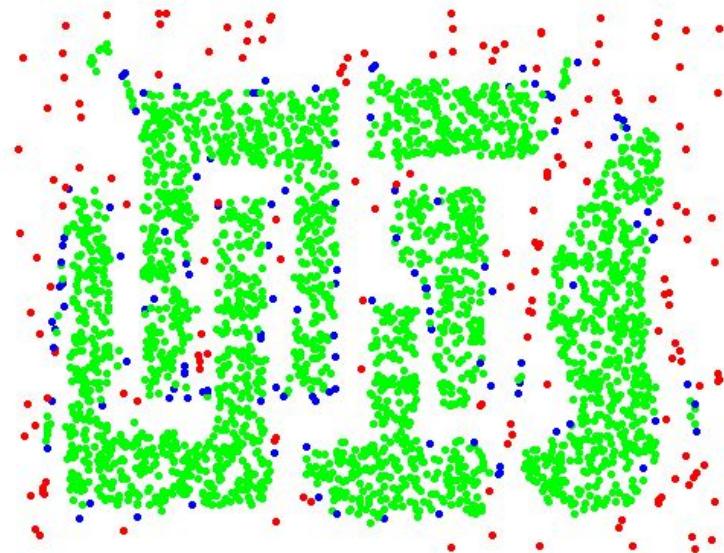


DBSCAN

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

DBSCAN: Core, Border and Noise Points



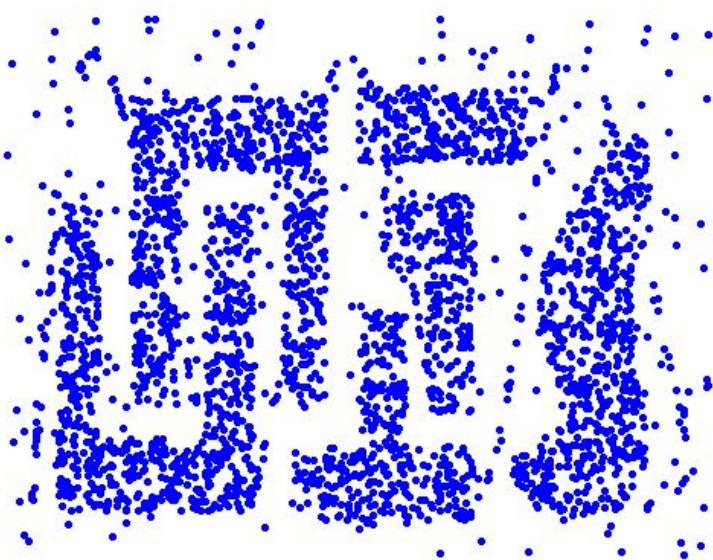
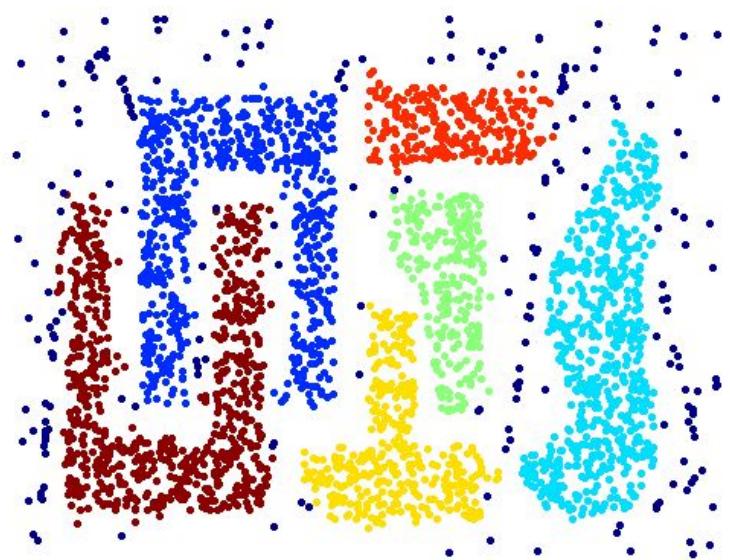
core
border
noise

title

73

Sharif University
of Technology

DBSCAN



- Resistant to Noise
- Can handle clusters of different shapes and sizes

DBSCAN: Determining EPS and MinPts

how to determine the parameters *Eps* and *MinPts*

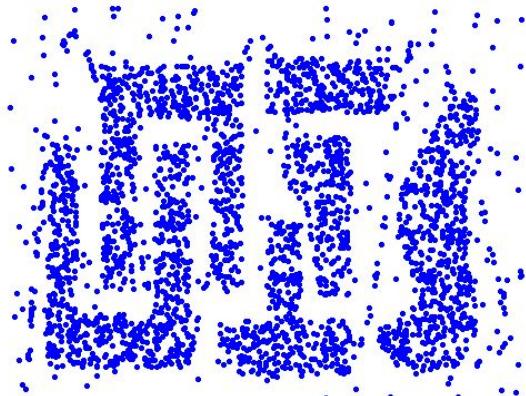
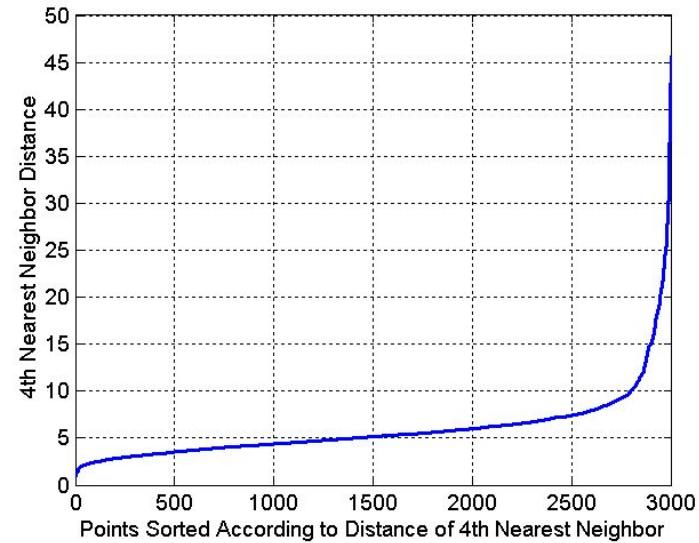
MinPts:

- ❖ **MinPts=K too small, noise or outliers** will be incorrectly labeled as clusters
- ❖ **k is too large, small clusters** are likely to be labeled as noise ($k = 4$)

Eps:

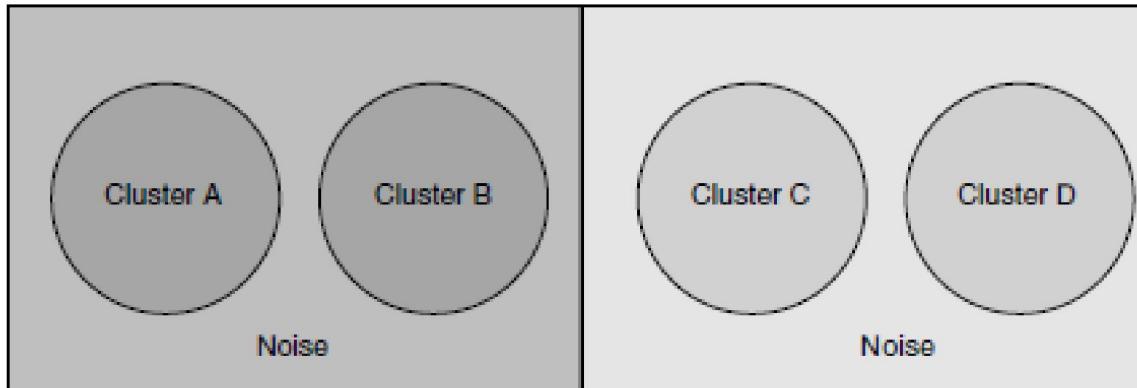
- ❖ look at the behavior of the distance from a point to its k th nearest neighbor(k -dist)
- ❖ Points belong to some cluster, the value of k -dist small if k is not larger than the cluster size
- ❖ points not in a cluster, such as noise points, the k -dist relatively large
- ❖ **compute the k -dist** for all the data points for some k
- ❖ **sort them** in increasing order, and then plot the sorted values
- ❖ **a sharp change** at the value of k -dist

DBSCAN: Determining EPS and MinPts



Clusters of Varying Density

DBSCAN can have trouble with density if the **density of clusters** varies widely



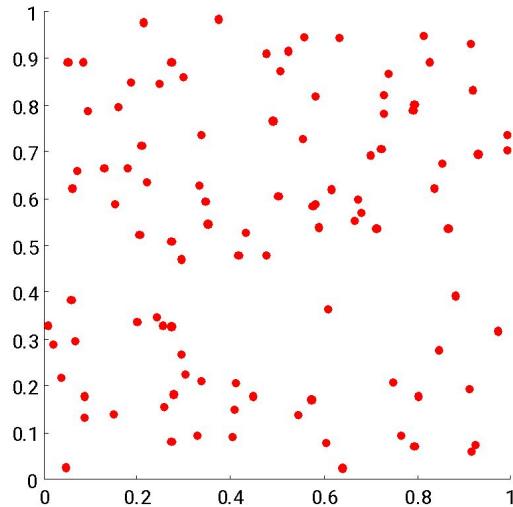
- *Eps threshold is low enough that DBSCAN finds C and D as clusters, then A and B and the points surrounding them will become a single cluster*
- *Eps threshold high enough that DBSCAN finds A and B as separate clusters, and the points surrounding them are marked as noise, then C and D and the points surrounding them will also be marked as noise*

Cluster Validity

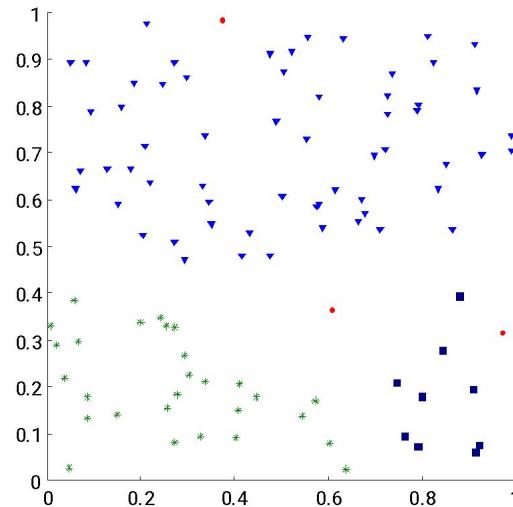
- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the “goodness” of the resulting clusters?
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

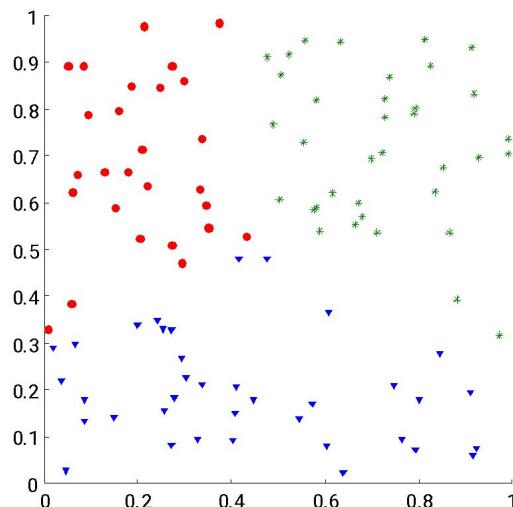
Random Points



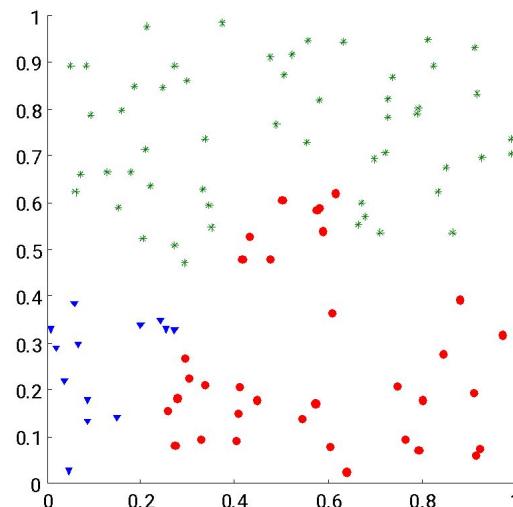
DBSCA N



K-mean S



Complete Link



Clustering Validity

- We need to determine whether the found clusters are real or compare different clustering methods.
- What is a good clustering?
 - clustering quality measurement
- Main approaches:
 - **Internal index:** evaluate how well the clustering fit the data without reference to an external information.
 - **External index:** evaluate how well is the clustering result with respect to known categories.
 - Assumption: Ground truth labels are available

Internal Index: Stability

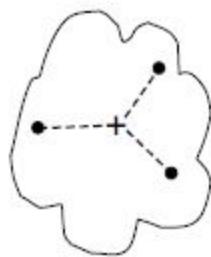
- Evaluate cluster stability to minor perturbation of data.
 - For example, evaluate a clustering result by comparing it with the obtained result after subsampling of data (e.g., subsampling 80% of data).
- To find stability, we need a measure of similarity between two k-clusterings.
 - It is based on comparing two k-clusterings
 - Similar to external indices that compare the clustering result with the ground truth.

Internal Index: Coherence

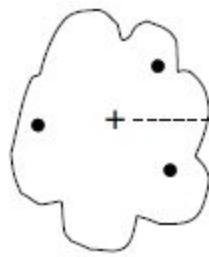
- Internal criterion is usually based on coherence:
 - Compactness of the data in the clusters
 - high intra-cluster similarity (closeness of cluster elements)
 - Separability of distinct clusters
 - low inter-cluster similarity
- Some internal indices: Davies-Bouldin (DB), Silhouette , DUNN, Bayesian information criterion (BIC), Calinski-Harabasz (CH)

Unsupervised Measures: Cohesion and Separation

Center-Based View



(a) Cohesion.



(b) Separation.

Figure 8.28. Prototype-based view of cluster cohesion and separation.

$$cohesion(C_i) = \sum_{x \in C_i} proximity(x, c_i)$$

$$separation(C_i, C_j) = proximity(c_i, c_j)$$

$$separation(C_i) = proximity(c_i, c)$$

title

INTERNAL CLUSTERING VALIDATION MEASURES

Measure	Notation	Definition	Optimal value
1 Root-mean-square std dev	$RMSSTD$	$\{\sum_i \sum_{x \in C_i} \ x - c_i\ ^2 / [P \sum_i (n_i - 1)]\}^{\frac{1}{2}}$	Elbow
2 R-squared	RS	$(\sum_{x \in D} \ x - c\ ^2 - \sum_i \sum_{x \in C_i} \ x - c_i\ ^2) / \sum_{x \in D} \ x - c\ ^2$	Elbow
3 Modified Hubert Γ statistic	Γ	$\frac{2}{n(n-1)} \sum_{x \in D} \sum_{y \in D} d(x, y) d_{x \in C_i, y \in C_j}(c_i, c_j)$	Elbow
4 Calinski-Harabasz index	CH	$\frac{\sum_i n_i d^2(c_i, c)}{\sum_i \sum_{x \in C_i} d^2(x, c_i) / (n - NC)}$	Max
5 I index	I	$(\frac{1}{NC} \cdot \frac{\sum_{x \in D} d(x, c)}{\min_{x \in C_i, y \in C_j} d(x, y)} \cdot \max_{i, j} d(c_i, c_j))^p$	Max
6 Dunn's indices	D	$\min_i \{\min_j (\frac{1}{\max_k \{\max_{x, y \in C_k} d(x, y)\}})\}$	Max
7 Silhouette index	S	$\frac{1}{NC} \sum_i \{ \frac{1}{n_i} \sum_{x \in C_i} \frac{b(x) - a(x)}{\max[b(x), a(x)]} \}$ $a(x) = \frac{1}{n_i - 1} \sum_{y \in C_i, y \neq x} d(x, y)$, $b(x) = \min_{j, j \neq i} [\frac{1}{n_j} \sum_{y \in C_j} d(x, y)]$	Max
8 Davies-Bouldin index	DB	$\frac{1}{NC} \sum_i \max_{j, j \neq i} \{ [\frac{1}{n_i} \sum_{x \in C_i} d(x, c_i) + \frac{1}{n_j} \sum_{x \in C_j} d(x, c_j)] / d(c_i, c_j) \}$	Min
9 Xie-Beni index	XB	$[\sum_i \sum_{x \in C_i} d^2(x, c_i)] / [n \cdot \min_{i, j \neq i} d^2(c_i, c_j)]$	Min
10 SD validity index	SD	$Dis(NC_{max})Scat(NC) + Dis(NC)$ $Scat(NC) = \frac{1}{NC} \sum_i \ \sigma(C_i)\ / \ \sigma(D)\ $, $Dis(NC) = \frac{\max_{i, j} d(c_i, c_j)}{\min_{i, j} d(c_i, c_j)} \sum_i (\sum_j d(c_i, c_j))^{-1}$	Min
11 S_Dbw validity index	S_Dbw	$Scat(NC) + Dens_bw(NC)$ $Dens_bw(NC) = \frac{1}{NC(NC-1)} \sum_i [\sum_{j, j \neq i} \frac{\sum_{x \in C_i \cup C_j} f(x, u_{ij})}{\max\{\sum_{x \in C_i} f(x, c_i), \sum_{x \in C_j} f(x, c_j)\}}]$	Min

D : data set; n : number of objects in D ; c : center of D ; P : attributes number of D ; NC : number of clusters; C_i : the i -th cluster; n_i : number of objects in C_i ; c_i : center of C_i ; $\sigma(C_i)$: variance vector of C_i ; $d(x, y)$: distance between x and y ; $\|X_i\| = (X_i^T \cdot X_i)^{\frac{1}{2}}$

External Index: Rand Index and Clustering F-measure

$$\bullet RI = \frac{TP+TN}{TP+TN+FP+FN}$$

$$\bullet P = \frac{TP}{TP+FP}, R = \frac{TP}{TP+FN}$$

$$\bullet F_\beta = \frac{(\beta^2+1)PR}{\beta^2P+R}$$

- *F measure in addition supports differential weighting of P and R.*

$$\bullet Jaccard = \frac{TP}{TP+FP+FN}$$

TP: # pairs that cluster together in both \mathcal{C} and $\hat{\mathcal{C}}$

TN: # pairs that are in separate clusters in both \mathcal{C} and $\hat{\mathcal{C}}$

FN: # pairs that cluster together in \mathcal{C} but not in $\hat{\mathcal{C}}$

FP: # pairs that cluster together in $\hat{\mathcal{C}}$ but not in \mathcal{C}

		Same	Different
Same	TP	FN	
Different	FP	TN	

Major Dilemma [Jain, 2010]

- What is a cluster?
 - What **features** should be used?
 - Should the data be **normalized**?
 - How do we define the **pair-wise similarity**?
 - Which **clustering method** should be used?
 - How **many clusters** are present in the data?
 - Does the data contain any **outliers**?
 - Does the data have any clustering **tendency**?
 - Are the discovered clusters and partition **valid**?

K-means vs. Hierarchical

- Time cost:
 - K-means is usually fast while hierarchical methods do not scale well
- Human intuition
 - Hierarchical structure provides more natural output compatible with human intuition in some domains
- Local minimum problem
 - It is very common for k-means
 - Hierarchical methods like any heuristic search algorithms also suffer from local optima problem.
 - Since they can never undo what was done previously and greedily merge clusters
- Choosing of the number of clusters
 - There is no need to specify the number of clusters in advance for hierarchical methods

External Index

- Comparing clustering result with externally known clustering, e.g., to externally given class labels.

External validation

- For this we need an external source that contains related, but usually not identical information.
- For example, assume we are clustering web pages based on the car pictures they contain.
- We have independently grouped these pages based on the text description they contain.
- Can we use the text based grouping to determine how well our clustering works?

- Suppose we have generated k clusters C_1, \dots, C_k . How do we assess the significance of their relation to m known (potentially overlapping) categories G_1, \dots, G_m ?
- Let's start by comparing a single cluster C with a single category G_j . The p -value for such a match is based on the hyper-geometric distribution.
- Board.
- This is the probability that a randomly chosen $|C_i|$ elements out of n would have l elements in common with G_j .

External Criteria: Purity

- Target Clusters: $C = \{C_1, K, C_c\}$

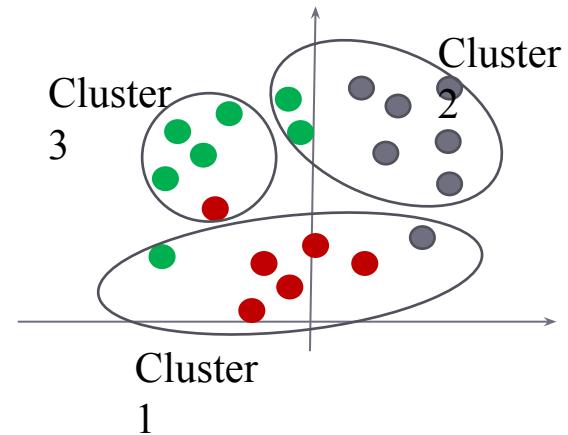
$$|C_i| = n_i \quad n_{ij} = |C_i \otimes C_i^{\triangleleft}|$$
$$|C_i^{\triangleleft}| = n'_i$$

- Found Clusters: $\hat{C} = \{\hat{C}_1, K, \hat{C}_k\}$

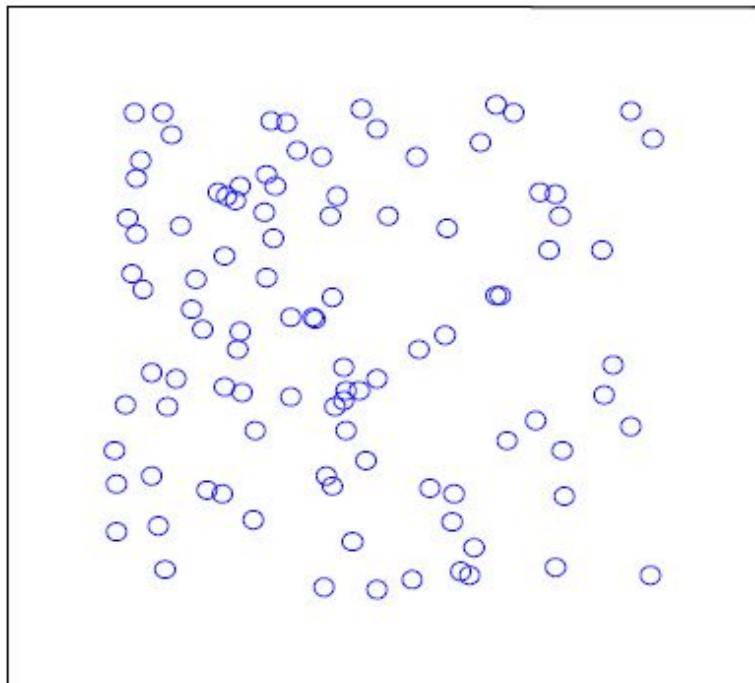
$$Purity(C, \hat{C}) = \frac{1}{N} \sum_{i=1}^k \max_{j=1, \dots, c} |\mathcal{C}_j \cap \hat{\mathcal{C}}_i|$$

- Purity prefers more clusters

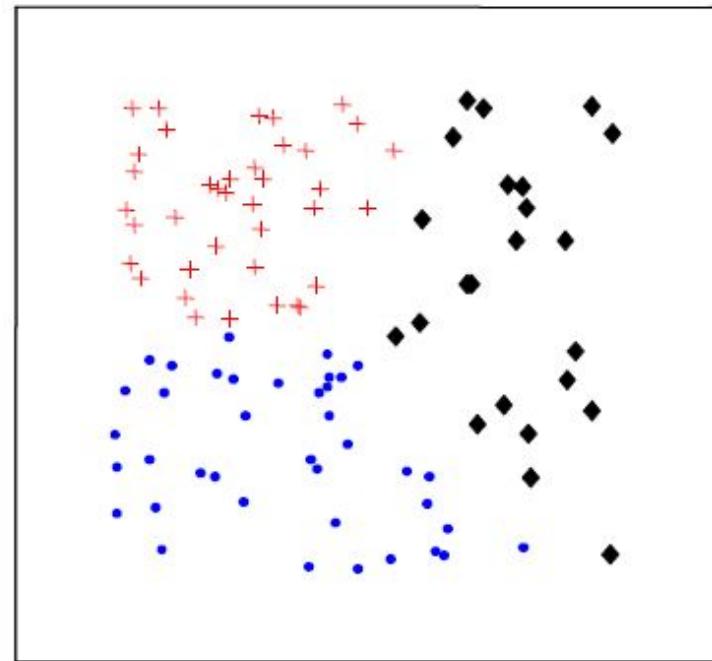
$$\frac{5 + 6 + 4}{20} = 0.75$$



Cluster Validation: Clustering Tendency



(a)



(b)

Figure 8 Cluster validity. (a) A dataset with no “natural” clustering; (b) K-means partition with $K = 3$.

Within and Between Cluster Criteria

Let's consider total point scatter for a set of N data points:

$$T = \frac{1}{2} \sum_{i=1}^N \sum_{l=1}^N d^2(\mathbf{x}_i, \mathbf{x}_l)$$

squared distance
between two points

T can be re-written as:

$$\begin{aligned} T &= \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \left(\sum_{\mathbf{x}_l \in C_j} d^2(\mathbf{x}_i, \mathbf{x}_l) + \sum_{\mathbf{x}_l \notin C_j} d^2(\mathbf{x}_i, \mathbf{x}_l) \right) \\ &= W(C) + B(C) \end{aligned}$$

Within cluster scatter $\rightarrow W(C) = \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \sum_{\mathbf{x}_l \in C_j} d^2(\mathbf{x}_i, \mathbf{x}_l)$

Between cluster scatter $\rightarrow B(C) = \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \sum_{\mathbf{x}_l \notin C_j} d^2(\mathbf{x}_i, \mathbf{x}_l)$

If d is square Euclidean distance, then

$$W(C) = \sum_{j=1}^k |C_j| \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mathbf{\mu}_j\|^2$$

$$B(C) = k \sum_{j=1}^k |C_j| \|\mathbf{\mu}_j - \mathbf{\mu}\|^2$$

Total or grand mean

Minimizing $W(C)$ is equivalent to maximizing $B(C)$

K -means issues, variations, etc.

- Recomputing the centroid after every assignment
 - Instead of computing it after all points are re-assigned
 - It can improve speed of convergence of K -means
- Assumes clusters are spherical in vector space
 - Sensitive to coordinate changes, weighting etc.
- Disjoint and exhaustive
 - Doesn't have a notion of "outliers" by default
 - But can add outlier filtering

K-medoids Algorithm

- It must choose a set of k points $\{c_1, c_2, \dots, c_k\}$ from dataset \mathcal{X} and form clusters $\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_k\}$
 - similar to k-means except to the location of the cluster representatives that must be selected only on the data points locations
 - Also known as PAM (Partitioning Around Medoids)
- Steps of a k-medoids algorithm:
 - Select randomly k medoids from the original data points \mathcal{X}
 - repeat until there is no change
 - Assign each of the $N - k$ remaining points in \mathcal{X} to their closest medoid
 - For each medoid m and (non-medoid) data point o associated to m
 - Swap m and o if it improves the total clustering cost

Within and Between Cluster Criteria

Let's consider total point scatter for a set of N data points:

$$T = \frac{1}{2} \sum_{i=1}^N \sum_{l=1}^N d^2(\mathbf{x}_i, \mathbf{x}_l)$$

squared distance
between two points

T can be re-written as:

$$\begin{aligned} T &= \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \left(\sum_{\mathbf{x}_l \in C_j} d^2(\mathbf{x}_i, \mathbf{x}_l) + \sum_{\mathbf{x}_l \notin C_j} d^2(\mathbf{x}_i, \mathbf{x}_l) \right) \\ &= W(C) + B(C) \end{aligned}$$

Within cluster scatter $\rightarrow W(C) = \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \sum_{\mathbf{x}_l \in C_j} d^2(\mathbf{x}_i, \mathbf{x}_l)$

Between cluster scatter $\rightarrow B(C) = \frac{1}{2} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \sum_{\mathbf{x}_l \notin C_j} d^2(\mathbf{x}_i, \mathbf{x}_l)$

If d is square Euclidean distance, then

$$W(C) = \sum_{j=1}^k |C_j| \sum_{\mathbf{x}_i \in C_j} \left\| \mathbf{x}_i - \bar{\mathbf{x}}_j \right\|^2$$

$$B(C) = k \sum_{j=1}^K |C_j| \left\| \bar{\mathbf{x}}_j - \bar{\mathbf{x}} \right\|^2$$

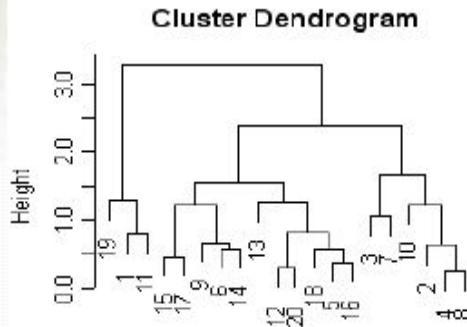
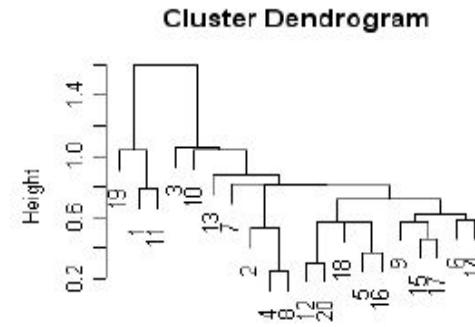
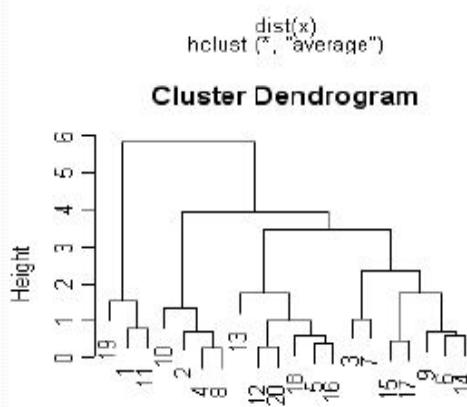
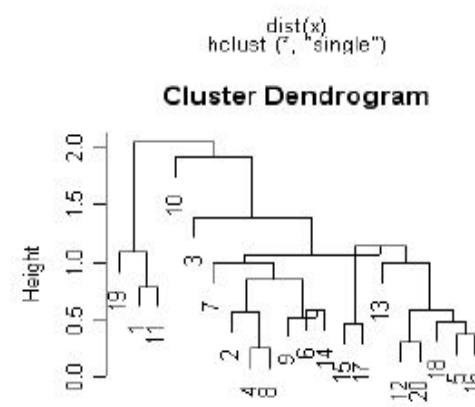
Total or grand mean

Minimizing $W(C)$ is equivalent to maximizing $B(C)$

K -means issues, variations, etc.

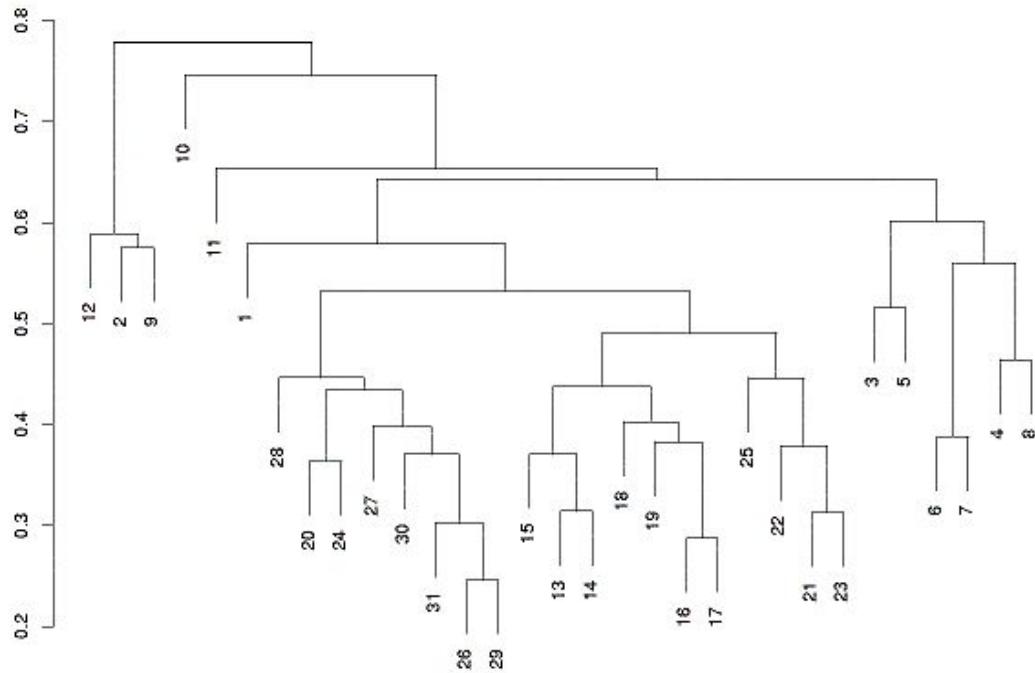
- Recomputing the centroid after every assignment
 - Instead of computing it after all points are re-assigned
 - It can improve speed of convergence of K -means
- Assumes clusters are spherical in vector space
 - Sensitive to coordinate changes, weighting etc.
- Disjoint and exhaustive
 - Doesn't have a notion of "outliers" by default
 - But can add outlier filtering

Hierarchical clustering



title

Average linkage hierarchical clustering, melanoma only



How many clusters are present?

Average linkage hierarchical clustering, melanoma only

