
Sharif University
 of Technology
Sharif University
 of Technology

Clustering
Machine Learning

Hamid R Rabiee – Zahra Dehghanian
Spring 2025



Sharif University
of Technologytitle22
Sharif University
of Technologytitle22

Unsupervised learning

•Clustering: partitioning of data into groups of 
similar data points.

•Density estimation
• Parametric & non-parametric density estimation

•Dimensionality reduction: data representation 
using a smaller number of dimensions while 
preserving (perhaps approximately) some 
properties of the data.
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Clustering: Definition

•  
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Clustering: Another Definition

• Density-based definition:
• Clusters are regions of high density that are separated 

from one another by regions of low density
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Difficulties

• Clustering is not as well-defined as classification

• Clustering is subjective
• Natural grouping may be ambiguous

5 Clustering
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Clustering Purpose

• Preprocessing stage to index, compress, or reduce the data

• Representing high-dimensional data in a low-dimensional space 
(e.g., for visualization purposes).

• Knowledge discovery from data: As a tool to understand the 
hidden structure in data or to group them

• To gain insight into the structure of the data (prior to classifier design)
• Provides information about the internal structure of the data

• To group or partition the data when no label is available

6 Clustering
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Clustering Applications

• Information retrieval (search and browsing)
• Cluster text docs or images based on their content
• Cluster groups of users based on their access patterns 

on webpages

7 Clustering
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Clustering of docs

• Google news

8 Clustering
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Clustering Applications

• Information retrieval (search and browsing)
• Cluster text docs or images based on their content
• Cluster groups of users based on their access patterns 

on webpages
•Cluster users of social networks by interest 
(community detection). 
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Social Network: Community Detection

10 Clustering
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Clustering Applications

• Information retrieval (search and browsing)
• Cluster text docs or images based on their content
• Cluster groups of users based on their access patterns 

on webpages
• Cluster users of social networks by interest 
(community detection). 
•Bioinformatics

• cluster similar proteins together (similarity w.r.t. 
chemical structure and/or functionality etc) 

• or cluster similar genes according to microarray data

11 Clustering
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Gene clustering

12

� Microarrays measures the expression of all genes
� Clustering genes can help to determine new functions for 

unknown genes by grouping genes

Clustering
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Clustering Applications

• Information retrieval (search and browsing)
• Cluster text docs or images based on their content
• Cluster groups of users based on their access patterns on webpages

• Cluster users of social networks by interest (community detection). 
• Bioinformatics

• Cluster similar proteins together (similarity wrt chemical structure and/or 
functionality etc) or similar genes according to microarray data

• Market segmentation
• Clustering customers based on the their purchase history and their 

characteristics

• Image segmentation
• Many more applications

13 Clustering
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Hierarchical Partitional

Categorization of Clustering Algorithms

Partitional algorithms: Construct various partitions and then evaluate 
them by some criterion 
the desired number of clusters K must be specified. 

Hierarchical algorithms: Create a hierarchical decomposition of the set of 
objects using some criterion

Clustering
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Clustering methods we will discuss

• Objective based clustering
• K-means
• EM-style algorithm for clustering for mixture of 

Gaussians (in the next lecture) 

• Hierarchical clustering 

15 Clustering
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Partitional Clustering

•  

16

Hard clustering: Each data can belong to one cluster only

Nonhierarchical, each instance is placed in 
exactly one of K non-overlapping clusters. 

Clustering
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Partitioning Algorithms: Basic Concept

 

Clustering



Sharif University
of Technologytitle1818
Sharif University
of Technologytitle1818

Objective Based Clustering

•  
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Distance Measure

•  
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K-means Clustering

•  
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Euclidean k-means Clustering 

•  

21

each point assigned to its closest cluster representative 
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Euclidean k-means Clustering: 
Computational Complexity 

•  
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Common Heuristic in Practice: The Lloyd’s 
method 

•  
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K-means Algorithm (The Lloyd’s method) 

24

 

Assign data based on current centers 

Re-estimate centers based on current assignment 

Clustering
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[Bishop]

Assigning data to 
clusters Updating means

Clustering



Sharif University
of Technologytitle2626
Sharif University
of Technologytitle2626

Intra-cluster similarity view

•  
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the average distance to members of the same cluster 

Clustering
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K-means: Convergence

•  

27

Sec. 16.4

After E-step

After M-step
[Bishop]
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Local optimum

• It always converges
• but it may converge at a local optimum that is 
different from the global optimum

• may be arbitrarily worse in terms of the objective score. 

28 Clustering
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Local optimum

• It always converges
• but it may converge at a local optimum that is 
different from the global optimum

• may be arbitrarily worse in terms of the objective score. 
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Local optimum

• It always converges
• but it may converge at a local optimum that is 
different from the global optimum

• may be arbitrarily worse in terms of the objective score. 

30

Local optimum: every point is assigned to its nearest center and every 
center is the mean value of its points. 

Clustering
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K-means: Local Minimum Problem

31

The obtained Clustering
Optimal Clustering

Original Data

Clustering
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The Lloyd’s method: Initialization

• Initialization is crucial (how fast it converges, quality 
of clustering) 

• Random centers from the data points
• Multiple runs and select the best ones

• Initialize with the results of another method
• Select good initial centers using a heuristic

• Furthest traversal 
• K-means ++ (works well and has provable gaurantees) 

32 Clustering
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Another Initialization Idea: Furthest Point 
Heuristic

•  

33 Clustering
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Another Initialization Idea: Furthest Point 
Heuristic

• It is sensitive to outliers

34 Clustering
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K-means++ Initialization: D2 sampling 
[D. Arthur and S. Vassilvitskii, 2007] 

•  

35 Clustering
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K-means Clustering: Cost Function

•  

36

 
K-median: 
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K-means Algorithm

37

 

Input: k
x1,…, xn

Choose initial centroids

Initial 
partitioning

M-step: Calculate 
centroids

E-step: Reassign 
objects to clusters

change in 
clustering

yes

no

end

start

Clustering
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K-means: Termination Conditions

• Several possibilities, e.g.,
• A fixed number of iterations is reached
• Data partitioning is unchanged
• Centroid positions don’t change

• Does this mean that the docs in a cluster are unchanged?

38 Clustering
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How Many Clusters?

39
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How Many Clusters?

•  

40

After E-step

After M-step
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K-means: Advantages and disadvantages

•  

41 Clustering
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k-means Algorithm: Limitation

• In general, k-means is unable to find clusters of 
arbitrary shapes, sizes, and densities

• Except to very distant clusters

42 Clustering
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K-means

• K-means was proposed near 60 years ago
• thousands of clustering algorithms have been published 

since then
• However, K-means is still widely used.

• This speaks to the difficulty in designing a general 
purpose clustering algorithm and the ill-posed 
problem of clustering.

43

A.K. Jain, Data Clustering: 50 years beyond k-means,2010.

Clustering
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K-means: Vector Quantization

• Data Compression
• Vector quantization: construct a codebook using k-means

• cluster means as prototypes representing examples assigned to 
clusters.

44

   

Clustering
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K-means: Image Segmentation

45 [Bishop]
Clustering
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Hierarchical Clustering

46

� Notion of a cluster can be ambiguous?
� How many clusters?
� Hierarchical Clustering: Clusters contain sub-clusters and 

sub-clusters themselves can have sub-sub-clusters, and so on
� Several levels of details in clustering

� A hierarchy might be more natural. 
� Different levels of granularity

Clustering
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Hierarchical Partitional

AgglomerativeDivisive

Categorization of Clustering Algorithms

Clustering
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Hierarchical Clustering

• Agglomerative (bottom up):
• Starts with each data in a separate cluster
• Repeatedly joins the closest pair of clusters, until there is only one 

cluster (or other stopping criteria).

• Divisive (top down):
• Starts with the whole data as a cluster
• Repeatedly divide data in one of the clusters until there is only one 

data in each cluster (or other stopping criteria).

48 Clustering
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Hierarchical Agglomerative Clustering (HAC)

• Algorithm
1. Maintain a set of clusters
2. Initially, each instance forms a cluster
3. While there are more than one cluster

• Pick the two closest one
• Merge them into a new cluster

49 Clustering
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Hierarchical Agglomerative Clustering (HAC)

• Algorithm
1. Maintain a set of clusters
2. Initially, each instance forms a cluster
3. While there are more than one cluster

• Pick the two closest one
• Merge them into a new cluster

50

7

6
5

4

3

2

1

Height represents the 
distance at which the merge 
occurs 

765 3241
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Distances between Cluster Pairs

• Many variants to defining distances between pair of 
clusters
• Single-link

• Minimum distance between different pairs of data
• Complete-link

• Maximum distance between different pairs of data
• Centroid (Ward’s)

• Distance between centroids (centers of gravity)
• Average-link

• Average distance between pairs of elements

51 Clustering
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Distances between Cluster Pairs

Single-link Complete-link

Ward’s Average-link
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Single-Link

53

765 3241

7

6
5

4

32

1

keep max bridge length as small as possible. 
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Complete Link

54

7

6
5

4

32

1

765 3241

keep max diameter as small as possible. 

Clustering
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Centroid Linkage

•  

55
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Average Linkage

•  
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57

A B C D E

A 0 1 2 2 3

B 1 0 2 4 3

C 2 2 0 1 5

D 2 4 1 0 3

E 3 3 5 3 0

EXAMPL
E

Clustering
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Ward’s method

•  

58 Clustering



Sharif University
of Technologytitle5959
Sharif University
of Technologytitle5959

Distances between Clusters: Summary

• Which distance is the best?  
• Complete linkage prefers compact clusters.
• Single linkage can produce long stretched clusters.

• The choice depends on what you need.
• expert opinion is helpful

59 Clustering
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Similarity Measure

•  

60 Clustering
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Distance Metric

•  

61 Clustering
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Feature (Attribute) Types

• Real-value
• e.g., weight

• Binary
• e.g., gender (M/F), has-diabetes(T/F)

• Nominal (categorical)
• e.g., Color (Red, Green, Blue, Yellow, …)

• Ordinal/Ranked
• e.g., quality (bad, average, good, excellent)

62 Clustering
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Distance Metrics for Real-Valued Data

•  

63 Clustering



Sharif University
of Technologytitle6464
Sharif University
of Technologytitle6464

Distance Metrics for Real-Valued Data

•  

64 Clustering
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Distance Metrics for Binary Data

•  

65 Clustering
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Data Matrix vs. Distance Matrix

•  

66 Clustering
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Computational Complexity

•  

67 Clustering
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Dendrogram: Hierarchical Clustering

• Clustering obtained by cutting the dendrogram at a desired 
level

• Cut at a pre-specified level of similarity
• where the gap between two successive combination similarities is 

largest
• select the cutting point that produces K clusters

68

Where to “cut” the dendrogram 
is user-determined.

7653241

Clustering
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Outliers

• We can detect outliers (that are very different to all 
others) by finding the isolated branches

69

765214 3 8

Clustering
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DBSCAN

• DBSCAN is a density-based algorithm.
• Density = number of points within a specified radius (Eps)

• A point is a core point if it has more than a specified 
number of points (MinPts) within Eps 
• These are points that are at the interior of a cluster

• A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point

• A noise point is any point that is not a core point or a border 
point. 
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DBSCAN: Core, Border, and Noise Points
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DBSCAN
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, border 
and noise

Eps = 10, MinPts = 4
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DBSCAN

Original Points Clusters
• Resistant to Noise

• Can handle clusters of different shapes and sizes
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DBSCAN: Determining EPS and MinPts

how to determine the parameters Eps and MinPts

MinPts:
❖ MinPts=K too small, noise or outliers will be incorrectly labeled as clusters
❖ k is too large,  small clusters are likely to be labeled as noise (k = 4)
Eps:
❖ look at the behavior of the distance from a point to its kth nearest 

neighbor(k-dist)
❖ Points belong to some cluster, the value of k-dist small if k is not larger than 

the cluster size
❖ points not in a cluster, such as noise points, the k-dist relatively large
❖ compute the k-dist for all the data points for some k
❖ sort them in increasing order, and then plot the sorted values
❖ a sharp change at the value of k-dist
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DBSCAN: Determining EPS and MinPts
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Clusters of Varying Density

DBSCAN can have trouble with density if the density of clusters varies widely

� Eps threshold is low enough that DBSCAN finds C and D as clusters, then A 
and B and the points surrounding them will become a single cluster

� Eps threshold high enough that DBSCAN finds A and B as separate clusters, 
and the points surrounding them are marked as noise, then C and D and the 
points surrounding them will also be marked as noise
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Cluster Validity 

◻ For supervised classification we have a variety of measures to 
evaluate how good our model is
� Accuracy, precision, recall

◻ For cluster analysis, the analogous question is how to evaluate 
the “goodness” of the resulting clusters?

◻ Then why do we want to evaluate them?
� To avoid finding patterns in noise
� To compare clustering algorithms
� To compare two sets of clusters
� To compare two clusters
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Clusters found in Random Data

Random 
Points

K-mean
s

DBSCA
N

Complete 
Link
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Clustering Validity

• We need to determine whether the found clusters are 
real or compare different clustering methods. 

• What is a good clustering?
• clustering quality measurement

• Main approaches:
• Internal index: evaluate how well the clustering fit the data 

without reference to an external information. 

• External index: evaluate how well is the clustering  result 
with respect to known categories.

• Assumption: Ground truth labels are available

80 Clustering
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Internal Index: Stability 

• Evaluate cluster stability to minor perturbation of 
data. 

• For example, evaluate a clustering result by comparing it 
with the obtained result after subsampling of data (e.g., 
subsampling 80% of data). 

• To find stability, we need a measure of similarity 
between two k-clusterings. 

• It is based on comparing two k-clusterings 
• Similar to external indices that compare the clustering result 

with the ground truth.

81 Clustering
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Internal Index: Coherence

• Internal criterion is usually based on coherence:
• Compactness of the data in the clusters

• high intra-cluster similarity (closeness of cluster elements)
• Separability of distinct clusters 

• low inter-cluster similarity

• Some internal indices: Davies-Bouldin (DB), 
Silhouette , DUNN, Bayesian information criterion 
(BIC), Calinski-Harabasz (CH)

82 Clustering
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Center-Based View

Unsupervised Measures: Cohesion and Separation
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External Index: Rand Index and Clustering 
F-measure

•  

85 Clustering

 

Same Different
Same TP FN

Different FP TN
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Major Dilemma [Jain, 2010]

• What is a cluster?
• What features should be used?
• Should the data be normalized?
• How do we define the pair-wise similarity?
• Which clustering method should be used?
• How many clusters are present in the data?
• Does the data contain any outliers?
• Does the data have any clustering tendency?
• Are the discovered clusters and partition valid?

86 Clustering
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K-means vs. Hierarchical

• Time cost:
• K-means is usually fast while hierarchical methods do not scale well

• Human intuition
• Hierarchical structure provides more natural output compatible 

with human intuition in some domains
• Local minimum problem

• It is very common for k-means
• Hierarchical methods like any heuristic search algorithms also suffer 

from local optima problem.
• Since they can never undo what was done previously and greedily 

merge clusters

• Choosing of the number of clusters 
• There is no need to specify the number of clusters in advance for 

hierarchical methods 

87 Clustering
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External Index

• Comparing clustering result with externally known 
clustering, e.g., to externally given class labels. 

88 Clustering
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External validation 

• For this we need an external source that contains 
related, but usually not identical information. 

• For example, assume we are clustering web pages 
based on the car pictures they contain. 

• We have independently grouped these pages based 
on the text description they contain. 

• Can we use the text based grouping to determine 
how well our clustering works? 

89 Clustering
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• Suppose we have generated k clusters C1,...,Ck. How do we 
assess the significance of their relation to m known 
(potentially overlapping) categories G1,...,Gm? 

• Let's start by comparing a single cluster C with a single 
category Gj. The p-value for such a match is based on the 
hyper-geometric distribution. 

• Board. 
• This is the probability that a randomly chosen |Ci| elements 

out of n would have l elements in common with Gj. 

90 Clustering
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External Criteria: Purity

•  
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Cluster 
3

Cluster 
1

Cluster 
2
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Cluster Validation: Clustering Tendency

92 Clustering



Within and Between Cluster Criteria

93

Let’s consider total point scatter for a set of N data points:
squared distance
between two points

T can be re-written as:

If d is square Euclidean distance, then
Within cluster 
scatter

Between cluster 
scatter

Minimizing W(C) is equivalent to maximizing B(C)
Total or grand mean
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K-means issues, variations, etc.

• Recomputing the centroid after every assignment 
• Instead of computing it after all points are re-assigned
• It can improve speed of convergence of K-means

• Assumes clusters are spherical in vector space
• Sensitive to coordinate changes, weighting etc. 

• Disjoint and exhaustive
• Doesn’t have a notion of “outliers” by default
• But can add outlier filtering

94 Clustering
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K-medoids Algorithm

•  
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Within and Between Cluster Criteria

Let’s consider total point scatter for a set of N data points:
squared distance
between two points

T can be re-written as:

If d is square Euclidean distance, then
Within cluster 
scatter

Between cluster 
scatter

Minimizing W(C) is equivalent to maximizing B(C) Total or grand mean

Clustering
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K-means issues, variations, etc.

• Recomputing the centroid after every assignment 
• Instead of computing it after all points are re-assigned
• It can improve speed of convergence of K-means

• Assumes clusters are spherical in vector space
• Sensitive to coordinate changes, weighting etc. 

• Disjoint and exhaustive
• Doesn’t have a notion of “outliers” by default
• But can add outlier filtering
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Hierarchical clustering
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How many clusters are present?

Clustering
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Average linkage hierarchical clustering, 
melanoma only

‘cluster’
unclustered

1-ρ = .54

Clustering


